메뉴 건너뛰기




Volumn 53, Issue 4, 2013, Pages 867-872

G-symplecticity implies conjugate-symplecticity of the underlying one-step method

Author keywords

Conjugate symplectic; G symplectic; Multi value method; Underlying one step method

Indexed keywords


EID: 84888134539     PISSN: 00063835     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10543-013-0437-1     Document Type: Article
Times cited : (28)

References (13)
  • 2
    • 84868566589 scopus 로고    scopus 로고
    • Dealing with parasitic behaviour in G-symplectic integrators
    • Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Berlin: Springer
    • Butcher, J. C.: Dealing with parasitic behaviour in G-symplectic integrators. In: Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 120, pp. 105-123. Springer, Berlin (2013).
    • (2013) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws , vol.120 , pp. 105-123
    • Butcher, J.C.1
  • 3
    • 67349260456 scopus 로고    scopus 로고
    • The existence of symplectic general linear methods
    • Butcher, J. C., Hewitt, L. L.: The existence of symplectic general linear methods. Numer. Algorithms 51(1), 77-84 (2009).
    • (2009) Numer. Algorithms , vol.51 , Issue.1 , pp. 77-84
    • Butcher, J.C.1    Hewitt, L.L.2
  • 5
    • 33744721734 scopus 로고    scopus 로고
    • An algebraic approach to invariant preserving integrators: the case of quadratic and Hamiltonian invariants
    • Chartier, P., Faou, E., Murua, A.: An algebraic approach to invariant preserving integrators: the case of quadratic and Hamiltonian invariants. Numer. Math. 103, 575-590 (2006).
    • (2006) Numer. Math. , vol.103 , pp. 575-590
    • Chartier, P.1    Faou, E.2    Murua, A.3
  • 7
    • 0001580611 scopus 로고
    • Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods
    • Eirola, T., Sanz-Serna, J. M.: Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods. Numer. Math. 61, 281-290 (1992).
    • (1992) Numer. Math. , vol.61 , pp. 281-290
    • Eirola, T.1    Sanz-Serna, J.M.2
  • 8
    • 54749087163 scopus 로고    scopus 로고
    • Conjugate-symplecticity of linear multistep methods
    • Hairer, E.: Conjugate-symplecticity of linear multistep methods. J. Comput. Math. 26(5), 657-659 (2008).
    • (2008) J. Comput. Math. , vol.26 , Issue.5 , pp. 657-659
    • Hairer, E.1
  • 9
    • 0011906409 scopus 로고    scopus 로고
    • Order barriers for symplectic multi-value methods
    • Pitman Research Notes in Mathematics Series, D. F. Griffiths, D. J. Higham, and G. A. Watson (Eds.)
    • Hairer, E., Leone, P.: Order barriers for symplectic multi-value methods. In: Griffiths, D. F., Higham, D. J., Watson, G. A. (eds.) Numerical Analysis 1997, Proc. of the 17th Dundee Biennial Conference 1997. Pitman Research Notes in Mathematics Series, vol. 380, pp. 133-149 (1998).
    • (1998) Numerical Analysis 1997, Proc. Of the 17th Dundee Biennial Conference 1997 , vol.380 , pp. 133-149
    • Hairer, E.1    Leone, P.2
  • 10
    • 84873370137 scopus 로고    scopus 로고
    • On conjugate symplecticity of B-series integrators
    • Hairer, E., Zbinden, C. J.: On conjugate symplecticity of B-series integrators. IMA J. Numer. Anal. 33(1), 57-79 (2013).
    • (2013) IMA J. Numer. Anal. , vol.33 , Issue.1 , pp. 57-79
    • Hairer, E.1    Zbinden, C.J.2
  • 13
    • 38249007285 scopus 로고
    • The symplecticity of multi-step methods
    • Tang, Y.-F.: The symplecticity of multi-step methods. Comput. Math. Appl. 25, 83-90 (1993).
    • (1993) Comput. Math. Appl. , vol.25 , pp. 83-90
    • Tang, Y.-F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.