메뉴 건너뛰기




Volumn 23, Issue 4, 2013, Pages 607-619

Generalized dirichlet L-function of arbitrary order with applications

Author keywords

Apostol Euler polynomials.; Dirichlet character; Hurwitz Lerch zeta functions; L series; Stirling numbers

Indexed keywords


EID: 84887971955     PISSN: 12293067     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (6)

References (27)
  • 1
    • 84972529289 scopus 로고
    • On the Lerch zeta function
    • T.M. Apostol, On the Lerch zeta function, Pacific J. Math. 1 (1951), 161-167.
    • (1951) Pacific J. Math. , vol.1 , pp. 161-167
    • Apostol, T.M.1
  • 2
    • 84893713758 scopus 로고    scopus 로고
    • Reduction and duality for the generalized hurwitz-lerch zetas
    • submitted
    • A. Bayad and J. Chikhi, Reduction and duality for the generalized hurwitz-lerch zetas, Fixed Point Theory and Applications (2013), submitted.
    • (2013) Fixed Point Theory and Applications
    • Bayad, A.1    Chikhi, J.2
  • 3
    • 75449093299 scopus 로고    scopus 로고
    • Apostol-bernoulli functions, derivative polynomials and eulerian polynomials
    • K.N. Boyadzhiev, Apostol-bernoulli functions, derivative polynomials and eulerian polynomials, Advances and Applications in Discrete Mathematics 1 (2008), no.2, 109-122.
    • (2008) Advances and Applications in Discrete Mathematics , vol.1 , Issue.2 , pp. 109-122
    • Boyadzhiev, K.N.1
  • 4
    • 0013475484 scopus 로고
    • Weighted stirling numbers of the first and second kind i
    • L. Carlitz, Weighted stirling numbers of the first and second kind i, Fibonacci Quart. 18 (1980), 147-162.
    • (1980) Fibonacci Quart. , vol.18 , pp. 147-162
    • Carlitz, L.1
  • 5
    • 0013479228 scopus 로고
    • Weighted stirling numbers of the first and second kind ii
    • L. Carlitz, Weighted stirling numbers of the first and second kind ii, Fibonacci Quart. 18 (1980), 242-257.
    • (1980) Fibonacci Quart. , vol.18 , pp. 242-257
    • Carlitz, L.1
  • 6
    • 35248898457 scopus 로고    scopus 로고
    • Further remarks on multiple p-adic q-l-function of two variables
    • M. Cenkci, Y. Simsek, and V. Kurt, Further remarks on multiple p-adic q-l-function of two variables, Adv. Stud. Contemp. Math. 14 (2007), 49-68.
    • (2007) Adv. Stud. Contemp. Math. , vol.14 , pp. 49-68
    • Cenkci, M.1    Simsek, Y.2    Kurt, V.3
  • 7
    • 0030372857 scopus 로고    scopus 로고
    • Explicit formula for bernoulli polynomials of order n
    • J. Choi, Explicit formula for bernoulli polynomials of order n, Indian J. pure appl. Math. 27 (1996), 667-674.
    • (1996) Indian J. Pure Appl. Math. , vol.27 , pp. 667-674
    • Choi, J.1
  • 8
    • 42649116806 scopus 로고    scopus 로고
    • Some q-extensions of the apostol-bernoulli and the apostol-euler polynomials of order n, and the multiple hurwitz zeta function
    • J. Choi, P.J. Anderson, and H.M. Srivastava, Some q-extensions of the apostol-bernoulli and the apostol-euler polynomials of order n, and the multiple hurwitz zeta function, Appl. Math. Comput 199 (2008), 723-737.
    • (2008) Appl. Math. Comput , vol.199 , pp. 723-737
    • Choi, J.1    Anderson, P.J.2    Srivastava, H.M.3
  • 11
    • 33749589040 scopus 로고    scopus 로고
    • Some relationships between the generalized apostol-bernoulli polynomials and hurwitz-lerch zeta functions
    • M. Garg, K. Jain, and H.M. Srivastava, Some relationships between the generalized apostol-bernoulli polynomials and hurwitz-lerch zeta functions, Integral Transform Spec. Funct. 17 (2006), no. 11, 803-815.
    • (2006) Integral Transform Spec. Funct. , vol.17 , Issue.11 , pp. 803-815
    • Garg, M.1    Jain, K.2    Srivastava, H.M.3
  • 12
    • 0141976231 scopus 로고    scopus 로고
    • On Euler-Barnes multiple zeta function
    • T. Kim, On Euler-Barnes multiple zeta function, Russ. J. Math. Phys. 10 (2003), 261-267.
    • (2003) Russ. J. Math. Phys. , vol.10 , pp. 261-267
    • Kim, T.1
  • 13
    • 35248846452 scopus 로고    scopus 로고
    • On p-adic interpolating function for q-Euler numbers and its derivatives
    • T. Kim, On p-adic interpolating function for q-Euler numbers and its derivatives, J. Math. Anal. Appl. 339, no 1 (2008), 598-608.
    • (2008) J. Math. Anal. Appl. , vol.339 , Issue.1 , pp. 598-608
    • Kim, T.1
  • 14
    • 40949083042 scopus 로고    scopus 로고
    • A note on multiple Dirichlet's q-l-functions
    • T. Kim and J.-S. Cho, A note on multiple Dirichlet's q-l-functions, Adv. Stud. Contemp. Math. 11, no 1 (2005), 57-60.
    • (2005) Adv. Stud. Contemp. Math. , vol.11 , Issue.1 , pp. 57-60
    • Kim, T.1    Cho, J.-S.2
  • 15
    • 33747419087 scopus 로고    scopus 로고
    • Apostol-euler polynomials of higher order and Gaussian hypergeometric functions
    • Q.-M. Luo, Apostol-Euler polynomials of higher order and gaussian hypergeometric functions, Taiwanese J. Math. 10 (4) (2006), 917-925. (Pubitemid 44577100)
    • (2006) Taiwanese Journal of Mathematics , vol.10 , Issue.4 , pp. 917-925
    • Luo, Q.-M.1
  • 16
    • 70349863230 scopus 로고    scopus 로고
    • Fourier expansions and integral representations for the apostol-bernoulli and apostol-euler polynomials
    • Luo Q.-M. Fourier expansions and integral representations for the apostol-bernoulli and apostol-euler polynomials, Math. Comp. 78 (2009), 2193-2208.
    • (2009) Math. Comp. , vol.78 , pp. 2193-2208
    • Luo, Q.-M.1
  • 17
    • 68949114125 scopus 로고    scopus 로고
    • The multiplication formulas for the apostol-bernoulli and apostol-euler polynomials of higher order
    • Luo Q.-M. The multiplication formulas for the apostol-bernoulli and apostol-euler polynomials of higher order, Integral Transform Spec. Funct. 20 (2009), 377-391.
    • (2009) Integral Transform Spec. Funct. , vol.20 , pp. 377-391
    • Luo, Q.-M.1
  • 18
    • 78650926144 scopus 로고    scopus 로고
    • Some formulas for apostol-euler polynomials associated with hurwitz zeta function at rational arguments
    • Luo Q.-M. Some formulas for apostol-euler polynomials associated with hurwitz zeta function at rational arguments, Applicable Analysis and Discrete Mathematics 3 (2009), 336-346.
    • (2009) Applicable Analysis and Discrete Mathematics , vol.3 , pp. 336-346
    • Luo, Q.-M.1
  • 19
    • 79951824838 scopus 로고    scopus 로고
    • An explicit relationship between the generalized apostol-bernoulli and apostol-euler polynomials associated with λ-stirling numbers of the second kind
    • Luo Q.-M. An explicit relationship between the generalized apostol-bernoulli and apostol-euler polynomials associated with λ-stirling numbers of the second kind, Houston J. Math. 36 (2010), 1159-1171.
    • (2010) Houston J. Math. , vol.36 , pp. 1159-1171
    • Luo, Q.-M.1
  • 20
    • 79551634909 scopus 로고    scopus 로고
    • Extension for the genocchi polynomials and its fourier expansions and integral representations
    • Luo Q.-M. Extension for the genocchi polynomials and its fourier expansions and integral representations, Osaka J. Math. 48 (2011), 291-310.
    • (2011) Osaka J. Math. , vol.48 , pp. 291-310
    • Luo, Q.-M.1
  • 21
    • 79551619555 scopus 로고    scopus 로고
    • Some generalizations of the apostol-genocchi polynomials and the stirling numbers of the second kind
    • Q.-M. Luo and H.M. Srivastava, Some generalizations of the apostol-genocchi polynomials and the stirling numbers of the second kind, Appl. Math. Comput 217 (2011), 5702-5728.
    • (2011) Appl. Math. Comput , vol.217 , pp. 5702-5728
    • Luo, Q.-M.1    Srivastava, H.M.2
  • 22
    • 43949146891 scopus 로고    scopus 로고
    • Multivariate interpolation functions of higher order q-Euler numbers and their applications
    • Article ID 390857 16 pages
    • H. Ozden, I.N. Cangul, and Y. Simsek, Multivariate interpolation functions of higher order q-Euler numbers and their applications, Abstr. Appl. Anal. Article ID 390857 (2008), 16 pages.
    • (2008) Abstr. Appl. Anal.
    • Ozden, H.1    Cangul, I.N.2    Simsek, Y.3
  • 23
    • 75449101143 scopus 로고    scopus 로고
    • Padé approximation and apostol-bernoulli and apostol-euler polynomials
    • M. Prévost, Padé approximation and apostol-bernoulli and apostol-euler polynomials, J. Comput. Appl. Math. 233 (2010), 3005-3017.
    • (2010) J. Comput. Appl. Math. , vol.233 , pp. 3005-3017
    • Prévost, M.1
  • 24
    • 79959204314 scopus 로고    scopus 로고
    • On the generalized q-Genocchi numbers and polynomials of higher order
    • Article ID 424809
    • C.S. Ryoo, T. Kim, J. Choi, and B. Lee, On the generalized q-Genocchi numbers and polynomials of higher order, Advances in Differences Equations, Article ID 424809 (2011), 8 pages.
    • (2011) Advances in Differences Equations , pp. 8
    • Ryoo, C.S.1    Kim, T.2    Choi, J.3    Lee, B.4
  • 25
    • 23044520680 scopus 로고    scopus 로고
    • Some formulas for the Bernoulli and Euler polynomials at rational arguments
    • H.M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000), 77-84.
    • (2000) Math. Proc. Cambridge Philos. Soc. , vol.129 , pp. 77-84
    • Srivastava, H.M.1
  • 26
    • 79953118320 scopus 로고    scopus 로고
    • Some extensions of the Fermi-Dirac and Bose-Einstein functions with applications to the family of the zeta and related functions
    • H.M. Srivastava, M.A. Chaudhry, A. Qadir, and A. Tassaddiq, Some extensions of the Fermi-Dirac and Bose-Einstein functions with applications to the family of the zeta and related functions, Russ. J. Math. Phys. 18 (1) (2011), 107-121.
    • (2011) Russ. J. Math. Phys. , vol.18 , Issue.1 , pp. 107-121
    • Srivastava, H.M.1    Chaudhry, M.A.2    Qadir, A.3    Tassaddiq, A.4
  • 27
    • 20744457221 scopus 로고    scopus 로고
    • Q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series
    • H.M. Srivastava, T. Kim, and Y. Simsek, q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series, Russ. J. Math. Phys. 12 (2005), 241-268. (Pubitemid 40855168)
    • (2005) Russian Journal of Mathematical Physics , vol.12 , Issue.2 , pp. 241-268
    • Srivastava, H.M.1    Kim, T.2    Simsek, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.