-
1
-
-
64749084426
-
Exoelectrogenic bacteria that power microbial fuel cells
-
Logan B.E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7:375-381.
-
(2009)
Nat. Rev. Microbiol.
, vol.7
, pp. 375-381
-
-
Logan, B.E.1
-
2
-
-
33748564008
-
Microbial fuel cells-challenges and applications
-
Logan B.E., Regan J.M. Microbial fuel cells-challenges and applications. Environ. Sci. Technol. 2006, 40:5172-5180.
-
(2006)
Environ. Sci. Technol.
, vol.40
, pp. 5172-5180
-
-
Logan, B.E.1
Regan, J.M.2
-
3
-
-
33748571739
-
Challenges and constraints of using oxygen cathodes in microbial fuel cells
-
Zhao F., Harnisch F., Schröder U., Scholz F., Bogdanoff P., Herrmann I. Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ. Sci. Technol. 2006, 40:5193-5199.
-
(2006)
Environ. Sci. Technol.
, vol.40
, pp. 5193-5199
-
-
Zhao, F.1
Harnisch, F.2
Schröder, U.3
Scholz, F.4
Bogdanoff, P.5
Herrmann, I.6
-
4
-
-
42749096540
-
Cathodic limitations in microbial fuel cells: an overview
-
Yazdi H.R., Carver S.M., Christy A.D., Tuovinen O.H. Cathodic limitations in microbial fuel cells: an overview. J. Power Sources 2008, 180:683-694.
-
(2008)
J. Power Sources
, vol.180
, pp. 683-694
-
-
Yazdi, H.R.1
Carver, S.M.2
Christy, A.D.3
Tuovinen, O.H.4
-
5
-
-
70350570447
-
Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: platinum vs. iron(II) phthalocyanine based electrodes
-
Harnisch F., Wirth S., Schröder U. Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: platinum vs. iron(II) phthalocyanine based electrodes. Electrochem. Commun. 2009, 11:2253-2256.
-
(2009)
Electrochem. Commun.
, vol.11
, pp. 2253-2256
-
-
Harnisch, F.1
Wirth, S.2
Schröder, U.3
-
6
-
-
79955010680
-
Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells
-
Yuan Y., Zhao B., Jeon Y, Zhong S., Zhou S., Kim S. Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells. Bioresour. Technol. 2011, 102:5849-5854.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 5849-5854
-
-
Yuan, Y.1
Zhao, B.2
Jeon, Y.3
Zhong, S.4
Zhou, S.5
Kim, S.6
-
7
-
-
77957340296
-
Application of Co-naphthalocyanine (CoNPc) as alternative cathode catalyst and support structure for microbial fuel cells
-
Kim J.R., Kim J.Y., Han S.B., Park K.W., Saratale G.D., Oh S.E. Application of Co-naphthalocyanine (CoNPc) as alternative cathode catalyst and support structure for microbial fuel cells. Bioresour. Technol. 2011, 102:342-347.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 342-347
-
-
Kim, J.R.1
Kim, J.Y.2
Han, S.B.3
Park, K.W.4
Saratale, G.D.5
Oh, S.E.6
-
8
-
-
73249127562
-
Manganese dioxide as a new cathode catalyst in microbial fuel cells
-
Li X., Hu B., Suib S., Lei Y., Li B. Manganese dioxide as a new cathode catalyst in microbial fuel cells. J. Power Sources 2010, 195:2586-2591.
-
(2010)
J. Power Sources
, vol.195
, pp. 2586-2591
-
-
Li, X.1
Hu, B.2
Suib, S.3
Lei, Y.4
Li, B.5
-
9
-
-
58549099649
-
Carbon-supported manganese oxide nanoparticles as electrocatalysts for oxygen reduction reaction (orr) in neutral solution
-
Roche I., Scott K. Carbon-supported manganese oxide nanoparticles as electrocatalysts for oxygen reduction reaction (orr) in neutral solution. J. Appl. Electrochem. 2009, 39:197-204.
-
(2009)
J. Appl. Electrochem.
, vol.39
, pp. 197-204
-
-
Roche, I.1
Scott, K.2
-
10
-
-
34250212076
-
Lead dioxide as an alternative catalyst to platinum in microbial fuel cells
-
Morris J.M., Jin S., Wang J., Zhu C., Urynowicz M.A. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells. Electrochem. Commun. 2007, 9:1730-1734.
-
(2007)
Electrochem. Commun.
, vol.9
, pp. 1730-1734
-
-
Morris, J.M.1
Jin, S.2
Wang, J.3
Zhu, C.4
Urynowicz, M.A.5
-
11
-
-
70350568781
-
Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell
-
Zhang F., Cheng S., Pant D., Bogaert G.V., Logan B.E. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem. Commun. 2009, 11:2177-2179.
-
(2009)
Electrochem. Commun.
, vol.11
, pp. 2177-2179
-
-
Zhang, F.1
Cheng, S.2
Pant, D.3
Bogaert, G.V.4
Logan, B.E.5
-
12
-
-
84865280791
-
Electrocatalysis of oxygen reduction reaction on polyaniline-derived nitrogendoped carbon nanoparticle surfaces in alkaline media
-
Gavrilov N., Pašti I.A., Mitrić M., Travas-Sejdić J., Ćirić-Marjanović G., Mentus S.V. Electrocatalysis of oxygen reduction reaction on polyaniline-derived nitrogendoped carbon nanoparticle surfaces in alkaline media. J. Power Sources 2012, 220:306-316.
-
(2012)
J. Power Sources
, vol.220
, pp. 306-316
-
-
Gavrilov, N.1
Pašti, I.A.2
Mitrić, M.3
Travas-Sejdić, J.4
Ćirić-Marjanović, G.5
Mentus, S.V.6
-
13
-
-
59849084114
-
Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction
-
Gong K., Du F., Xia Z., Durstock M., Dai L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323:760-764.
-
(2009)
Science
, vol.323
, pp. 760-764
-
-
Gong, K.1
Du, F.2
Xia, Z.3
Durstock, M.4
Dai, L.5
-
14
-
-
77950140364
-
Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells
-
Qu L., Liu Y., Baek J.B., Dai L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4:1321-1326.
-
(2010)
ACS Nano
, vol.4
, pp. 1321-1326
-
-
Qu, L.1
Liu, Y.2
Baek, J.B.3
Dai, L.4
-
15
-
-
77950283502
-
Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction
-
Liu R., Wu D., Feng X., Mullen K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem. Int. Ed. 2010, 49:2565-2569.
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 2565-2569
-
-
Liu, R.1
Wu, D.2
Feng, X.3
Mullen, K.4
-
16
-
-
79952385496
-
-
Geng D.S., Chen Y., Chen Y.G., Li Y.L., Li R.Y., Sun X.L., Ye S.Y., Knights S. Energy Environ. Sci. 2011, 4:760-764.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 760-764
-
-
Geng, D.S.1
Chen, Y.2
Chen, Y.G.3
Li, Y.L.4
Li, R.Y.5
Sun, X.L.6
Ye, S.Y.7
Knights, S.8
-
17
-
-
84863775985
-
Carbon nanomaterials as metal-free catalysts in next generation fuel cells
-
Zhang M., Dai L. Carbon nanomaterials as metal-free catalysts in next generation fuel cells. Nano Energy 2012, 1:514-517.
-
(2012)
Nano Energy
, vol.1
, pp. 514-517
-
-
Zhang, M.1
Dai, L.2
-
18
-
-
84863229989
-
Nanostructured carbon for energy storage and conversion
-
Candelaria S.L., Shao Y., Zhou W., Li X., Xiao J., Zhang J.-G., Wang Y., Liu J., Li J., Cao G. Nanostructured carbon for energy storage and conversion. Nano Energy 2012, 1:195-220.
-
(2012)
Nano Energy
, vol.1
, pp. 195-220
-
-
Candelaria, S.L.1
Shao, Y.2
Zhou, W.3
Li, X.4
Xiao, J.5
Zhang, J.-G.6
Wang, Y.7
Liu, J.8
Li, J.9
Cao, G.10
-
19
-
-
15944396428
-
Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes
-
Maldonado S., Stevenson K.J. Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J. Phys. Chem. B 2005, 109:4707-4716.
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 4707-4716
-
-
Maldonado, S.1
Stevenson, K.J.2
-
20
-
-
79955697516
-
Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells
-
Feng L., Yan Y., Chen Y., Wang L. Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells. Energy Environ. Sci. 2011, 4:1892-1899.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 1892-1899
-
-
Feng, L.1
Yan, Y.2
Chen, Y.3
Wang, L.4
-
21
-
-
0034888903
-
Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia
-
Mangun C.L., Benak K.R., Economy J., Foster K.L. Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia. Carbon 2001, 39:1809-1820.
-
(2001)
Carbon
, vol.39
, pp. 1809-1820
-
-
Mangun, C.L.1
Benak, K.R.2
Economy, J.3
Foster, K.L.4
-
22
-
-
67649147866
-
Conducting carbonized polyaniline nanotubes
-
Mentus S., Ćirić-Marjanović G., Trchová M., Stejskal J. Conducting carbonized polyaniline nanotubes. Nanotechnology 2009, 20:245-601.
-
(2009)
Nanotechnology
, vol.20
, pp. 245-601
-
-
Mentus, S.1
Ćirić-Marjanović, G.2
Trchová, M.3
Stejskal, J.4
-
23
-
-
77953277008
-
Metal-free and electrocatalytically active nitrogen-doped carbon nanotubes synthesized by coating with polyaniline
-
Jin C., Nagaiah T.C., Xia W., Spliethoff B., Wang S., Bron M., Schuhmann W., Muhler M. Metal-free and electrocatalytically active nitrogen-doped carbon nanotubes synthesized by coating with polyaniline. Nanoscale 2010, 2:981-987.
-
(2010)
Nanoscale
, vol.2
, pp. 981-987
-
-
Jin, C.1
Nagaiah, T.C.2
Xia, W.3
Spliethoff, B.4
Wang, S.5
Bron, M.6
Schuhmann, W.7
Muhler, M.8
-
24
-
-
77954865828
-
Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid
-
Zhou Z., Liu K., Lai C., Zhang L., Li J., Hou H., Reneker D.H., Fong H. Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid. Polymer 2010, 51:2360-2367.
-
(2010)
Polymer
, vol.51
, pp. 2360-2367
-
-
Zhou, Z.1
Liu, K.2
Lai, C.3
Zhang, L.4
Li, J.5
Hou, H.6
Reneker, D.H.7
Fong, H.8
-
25
-
-
65249146567
-
Synthesis of carbon/carbon core/shell nanotubes with a high specific surface area
-
Qiu Y., Yu J., Fang G., Shi H., Zhou X., Bai X. Synthesis of carbon/carbon core/shell nanotubes with a high specific surface area. J. Phys. Chem. C 2009, 113:61-68.
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 61-68
-
-
Qiu, Y.1
Yu, J.2
Fang, G.3
Shi, H.4
Zhou, X.5
Bai, X.6
-
26
-
-
84870458049
-
2 battery cathodes
-
2 battery cathodes. ACS Nano 2012, 6:9764-9776.
-
(2012)
ACS Nano
, vol.6
, pp. 9764-9776
-
-
Wu, G.1
Mack, N.H.2
Gao, W.3
Ma, S.4
Zhong, R.5
Han, J.6
Baldwin, J.K.7
Zelenay, P.8
-
27
-
-
84878391408
-
Efficient metal-free electrocatalysts for oxygen reduction: polyaniline-derived N-and O-doped mesoporous carbons
-
Silva R., Voiry D., Chhowalla M., Asefa T. Efficient metal-free electrocatalysts for oxygen reduction: polyaniline-derived N-and O-doped mesoporous carbons. JACS Commun. 2013, 135:7823-7826.
-
(2013)
JACS Commun.
, vol.135
, pp. 7823-7826
-
-
Silva, R.1
Voiry, D.2
Chhowalla, M.3
Asefa, T.4
-
28
-
-
13444302668
-
KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation
-
Raymundo-Piñero E., Azaïs P., Cacciaguerra T., Cazorla-Amorós D., Linares-Solano A., Béguin F. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 2005, 43:786-795.
-
(2005)
Carbon
, vol.43
, pp. 786-795
-
-
Raymundo-Piñero, E.1
Azaïs, P.2
Cacciaguerra, T.3
Cazorla-Amorós, D.4
Linares-Solano, A.5
Béguin, F.6
-
29
-
-
0021603802
-
The reaction of potassium-graphite intercalation compounds with water
-
Schlögl R., Boehm H.P. The reaction of potassium-graphite intercalation compounds with water. Carbon 1984, 22:351-358.
-
(1984)
Carbon
, vol.22
, pp. 351-358
-
-
Schlögl, R.1
Boehm, H.P.2
-
30
-
-
33947461960
-
Preparation of graphitic oxide
-
Hummers W.S., Offeman R.E. Preparation of graphitic oxide. Chem. Soc. 1958, 80:1339-1341.
-
(1958)
Chem. Soc.
, vol.80
, pp. 1339-1341
-
-
Hummers, W.S.1
Offeman, R.E.2
-
31
-
-
84862298994
-
2-graphene hybrid as an alternative cathodic catalyst to platinum in microbial fuel cells
-
2-graphene hybrid as an alternative cathodic catalyst to platinum in microbial fuel cells. J. Power Sources 2012, 216:187-191.
-
(2012)
J. Power Sources
, vol.216
, pp. 187-191
-
-
Wen, Q.1
Wang, S.2
Yan, J.3
Cong, L.4
Pan, Z.5
Ren, Y.6
Fan, Z.7
-
32
-
-
3242707506
-
Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane
-
Liu H., Logan B.E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 2004, 38:4040-4046.
-
(2004)
Environ. Sci. Technol.
, vol.38
, pp. 4040-4046
-
-
Liu, H.1
Logan, B.E.2
-
33
-
-
66149189097
-
Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater
-
Wen Q., Wu Y., Cao D.X., Zhao L.X., Sun Q. Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Bioresour. Technol. 2009, 100:4171-4175.
-
(2009)
Bioresour. Technol.
, vol.100
, pp. 4171-4175
-
-
Wen, Q.1
Wu, Y.2
Cao, D.X.3
Zhao, L.X.4
Sun, Q.5
-
35
-
-
71749112803
-
Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon
-
Liu G., Li X., Ganesan P., Popov B.N. Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon. Appl. Catal. B Environ. 2009, 93:156-165.
-
(2009)
Appl. Catal. B Environ.
, vol.93
, pp. 156-165
-
-
Liu, G.1
Li, X.2
Ganesan, P.3
Popov, B.N.4
-
36
-
-
66449118468
-
Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties
-
Wei D.C., Liu Y.Q., Wang Y., Zhang H.L., Huang L.P., Yu G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9:1752-1758.
-
(2009)
Nano Lett.
, vol.9
, pp. 1752-1758
-
-
Wei, D.C.1
Liu, Y.Q.2
Wang, Y.3
Zhang, H.L.4
Huang, L.P.5
Yu, G.6
-
37
-
-
78649614247
-
Synthesis of nitrogen-doped graphene films for lithium battery application
-
Reddy A.L.M., Srivastava A., Gowda S.R., Gullapalli H., Dubey M., Ajayan P.M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 2010, 4:6337-6342.
-
(2010)
ACS Nano
, vol.4
, pp. 6337-6342
-
-
Reddy, A.L.M.1
Srivastava, A.2
Gowda, S.R.3
Gullapalli, H.4
Dubey, M.5
Ajayan, P.M.6
-
38
-
-
84857238590
-
Application of nitrogen-doped carbon powders as low-cost and durable cathodic catalyst to air-cathode microbial fuel cells
-
Shi X., Feng Y., Wang X., Lee H., Liu J., Qu Y., He W., Kumar S.M., Ren N. Application of nitrogen-doped carbon powders as low-cost and durable cathodic catalyst to air-cathode microbial fuel cells. Bioresour. Technol. 2012, 108:89-93.
-
(2012)
Bioresour. Technol.
, vol.108
, pp. 89-93
-
-
Shi, X.1
Feng, Y.2
Wang, X.3
Lee, H.4
Liu, J.5
Qu, Y.6
He, W.7
Kumar, S.M.8
Ren, N.9
-
39
-
-
84555220458
-
Easy-to-operate and low-temperature synthesis of gram-scale nitrogen-doped graphene and its application as cathode catalyst in microbial fuel cells
-
Feng L., Chen Y., Chen L. Easy-to-operate and low-temperature synthesis of gram-scale nitrogen-doped graphene and its application as cathode catalyst in microbial fuel cells. ACS Nano 2011, 5:9611-9618.
-
(2011)
ACS Nano
, vol.5
, pp. 9611-9618
-
-
Feng, L.1
Chen, Y.2
Chen, L.3
-
40
-
-
33344465903
-
Increased performance of single-chamber microbial fuel cells using an improved cathode structure
-
Logan B.E., Shaoan C., Hong L. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem. Commun. 2006, 8:489-494.
-
(2006)
Electrochem. Commun.
, vol.8
, pp. 489-494
-
-
Logan, B.E.1
Shaoan, C.2
Hong, L.3
|