메뉴 건너뛰기




Volumn , Issue , 2013, Pages 229-236

To personalize or not: A risk management perspective

Author keywords

Collaborative filtering; Personalization; Portfolio theory; Recommender systems

Indexed keywords

LOW BIAS; PERSONALIZATION MODEL; PERSONALIZATIONS; PERSONALIZED RECOMMENDATION; PORTFOLIO THEORIES; REAL-WORLD DATASETS; RECOMMENDATION ALGORITHMS; SPARSE DATA;

EID: 84887576455     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2507157.2507167     Document Type: Conference Paper
Times cited : (24)

References (35)
  • 2
    • 74549174132 scopus 로고    scopus 로고
    • Reducing the risk of query expansion via robust constrained optimization
    • K. Collins-Thompson. Reducing the risk of query expansion via robust constrained optimization. In CIKM, 2009.
    • (2009) CIKM
    • C-Thompson, K.1
  • 4
    • 42549140738 scopus 로고    scopus 로고
    • An experimental comparison of click position-bias models
    • N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An experimental comparison of click position-bias models. In WSDM, 2008.
    • (2008) WSDM
    • Craswell, N.1    Zoeter, O.2    Taylor, M.3    Ramsey, B.4
  • 5
    • 78649914423 scopus 로고    scopus 로고
    • Performance of recommender algorithms on top-n recommendation tasks
    • P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n recommendation tasks. In RecSys, 2010.
    • (2010) RecSys
    • Cremonesi, P.1    Koren, Y.2    Turrin, R.3
  • 6
    • 35348914807 scopus 로고    scopus 로고
    • Google news personalization: Scalable online collaborative filtering
    • A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable online collaborative filtering. In WWW, 2007.
    • (2007) WWW
    • Das, A.S.1    Datar, M.2    Garg, A.3    Rajaram, S.4
  • 7
    • 78649975969 scopus 로고    scopus 로고
    • The youtube video recommendation system
    • J. Davidson et al. The youtube video recommendation system. In RecSys, 2010.
    • (2010) RecSys
    • Davidson, J.1
  • 9
    • 0012937288 scopus 로고    scopus 로고
    • A unified bias-variance decomposition
    • P. Domingos. A unified bias-variance decomposition. In ICML, 2000.
    • (2000) ICML
    • Domingos, P.1
  • 12
  • 13
    • 85015559680 scopus 로고    scopus 로고
    • An algorithmic framework for performing collaborative filtering
    • J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for performing collaborative filtering. In SIGIR, 1999.
    • (1999) SIGIR
    • Herlocker, J.L.1    Konstan, J.A.2    Borchers, A.3    Riedl, J.4
  • 14
    • 0000827254 scopus 로고    scopus 로고
    • Latent class models for collaborative filtering
    • T. Hofmann and J. Puzicha. Latent class models for collaborative filtering. In Proc. of IJCAI, 1999.
    • (1999) Proc. of IJCAI
    • Hofmann, T.1    Puzicha, J.2
  • 16
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 2009.
    • (2009) Computer
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 17
    • 0037252945 scopus 로고    scopus 로고
    • Amazon com recommendations: Item-to-item collaborative filtering
    • IEEE
    • G. Linden, B. Smith, and J. York. Amazon. com recommendations: Item-to-item collaborative filtering. Internet Computing, IEEE, 7(1):76-80, 2003.
    • (2003) Internet Computing , vol.7 , Issue.1 , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 18
    • 84995186518 scopus 로고
    • Portfolio selection
    • H. Markowitz. Portfolio selection. The journal of finance, 7(1):77-91, 1952.
    • (1952) The Journal of Finance , vol.7 , Issue.1 , pp. 77-91
    • Markowitz, H.1
  • 20
    • 77954608294 scopus 로고    scopus 로고
    • Diversifying web search results
    • ACM
    • D. Rafiei, K. Bharat, and A. Shukla. Diversifying web search results. In WWW. ACM, 2010.
    • (2010) WWW
    • Rafiei, D.1    Bharat, K.2    Shukla, A.3
  • 21
    • 79951760087 scopus 로고    scopus 로고
    • Factorization machines
    • S. Rendle. Factorization machines. In ICDM, 2010.
    • (2010) ICDM
    • Rendle, S.1
  • 24
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using markov chain monte carlo
    • R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. In ICML, 2008.
    • (2008) ICML
    • Salakhutdinov, R.1    Mnih, A.2
  • 25
    • 85161989354 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. NIPS, 2008.
    • (2008) NIPS
    • Salakhutdinov, R.1    Mnih, A.2
  • 26
    • 85119665974 scopus 로고    scopus 로고
    • Analysis of recommendation algorithms for e-commerce
    • B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Analysis of recommendation algorithms for e-commerce. In EC, 2000.
    • (2000) EC
    • Sarwar, B.1    Karypis, G.2    Konstan, J.3    Riedl, J.4
  • 27
    • 84866632656 scopus 로고    scopus 로고
    • Adaptive diversification of recommendation results via latent factor portfolio
    • Y. Shi, X. Zhao, J. Wang, M. Larson, and A. Hanjalic. Adaptive diversification of recommendation results via latent factor portfolio. In SIGIR, 2012.
    • (2012) SIGIR
    • Shi, Y.1    Zhao, X.2    Wang, J.3    Larson, M.4    Hanjalic, A.5
  • 28
    • 82555183096 scopus 로고    scopus 로고
    • Item popularity and recommendation accuracy
    • H. Steck. Item popularity and recommendation accuracy. In RecSys, 2011.
    • (2011) RecSys
    • Steck, H.1
  • 29
    • 57349200292 scopus 로고    scopus 로고
    • To personalize or not to personalize: Modeling queries with variation in user intent
    • J. Teevan, S. T. Dumais, and D. J. Liebling. To personalize or not to personalize: modeling queries with variation in user intent. In SIGIR, 2008.
    • (2008) SIGIR
    • Teevan, J.1    Dumais, S.T.2    Liebling, D.J.3
  • 30
    • 33750345680 scopus 로고    scopus 로고
    • Unifying user-based and item-based collaborative filtering approaches by similarity fusion
    • J. Wang, A. P. de Vries, and M. J. T. Reinders. Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In SIGIR, 2006.
    • (2006) SIGIR
    • Wang, J.1    De Vries, A.P.2    Reinders, M.J.T.3
  • 31
    • 72449155619 scopus 로고    scopus 로고
    • Portfolio theory of information retrieval
    • J. Wang and J. Zhu. Portfolio theory of information retrieval. In SIGIR, 2009.
    • (2009) SIGIR
    • Wang, J.1    Zhu, J.2
  • 32
    • 77956031442 scopus 로고    scopus 로고
    • On statistical analysis and optimization of information retrieval effectiveness metrics
    • J. Wang and J. Zhu. On statistical analysis and optimization of information retrieval effectiveness metrics. In SIGIR, 2010.
    • (2010) SIGIR
    • Wang, J.1    Zhu, J.2
  • 33
    • 84866596007 scopus 로고    scopus 로고
    • Robust ranking models via risk-sensitive optimization
    • L. Wang, P. N. Bennett, and K. Collins-Thompson. Robust ranking models via risk-sensitive optimization. In SIGIR, 2012.
    • (2012) SIGIR
    • Wang, L.1    Bennett, P.N.2    Collins-Thompson, K.3
  • 34
    • 72449124739 scopus 로고    scopus 로고
    • Risky business: Modeling and exploiting uncertainty in information retrieval
    • J. Zhu, J. Wang, I. J. Cox, and M. J. Taylor. Risky business: modeling and exploiting uncertainty in information retrieval. In SIGIR, 2009.
    • (2009) SIGIR
    • Zhu, J.1    Wang, J.2    Cox, I.J.3    Taylor, M.J.4
  • 35
    • 78649411687 scopus 로고    scopus 로고
    • The effect of rating variance on personalized recommendation
    • Y.-X. Zhu, W. Zeng, and Q.-M. Zhang. The effect of rating variance on personalized recommendation. In CCSE, 2010.
    • (2010) CCSE
    • Zhu, Y.-X.1    Zeng, W.2    Zhang, Q.-M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.