메뉴 건너뛰기




Volumn , Issue , 2013, Pages 545-548

Background subtraction via coherent trajectory decomposition

Author keywords

Background subtraction; Low rank; Sparse; Trajectory

Indexed keywords

BACKGROUND SUBTRACTION; BACKGROUND SUBTRACTION METHOD; COMPETITIVE PERFORMANCE; LOW-RANK; LOW-RANK DECOMPOSITION; MARKOV RANDOM FIELDS; SPARSE; SPATIAL COHERENCY;

EID: 84887496983     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2502081.2502144     Document Type: Conference Paper
Times cited : (6)

References (16)
  • 1
    • 80052912117 scopus 로고    scopus 로고
    • Object segmentation by long term analysis of point trajectories
    • T. Brox and J. Malik. Object segmentation by long term analysis of point trajectories. In ECCV, 2010.
    • (2010) ECCV
    • Brox, T.1    Malik, J.2
  • 2
    • 79551562584 scopus 로고    scopus 로고
    • Large displacement optical flow: Descriptor matching in variational motion estimation
    • T. Brox and J. Malik. Large displacement optical flow: Descriptor matching in variational motion estimation. PAMI, 33(3), 2011.
    • (2011) PAMI , vol.33 , Issue.3
    • Brox, T.1    Malik, J.2
  • 3
    • 84873447131 scopus 로고    scopus 로고
    • Background subtraction using group sparsity and low rank constraint
    • X. Cui, J. Huang, S. Zhang, and D. Metaxas. Background subtraction using group sparsity and low rank constraint. In ECCV, 2012.
    • (2012) ECCV
    • Cui, X.1    Huang, J.2    Zhang, S.3    Metaxas, D.4
  • 4
    • 0001267733 scopus 로고    scopus 로고
    • Non-parametric model for background subtraction
    • A. M. Elgammal, D. Harwood, and L. S. Davis. Non-parametric model for background subtraction. In ECCV, 2000.
    • (2000) ECCV
    • Elgammal, A.M.1    Harwood, D.2    Davis, L.S.3
  • 5
    • 85015133783 scopus 로고    scopus 로고
    • Block-sparse rpca for consistent foreground detection
    • Z. Gao, L.-F. Cheong, and M. Shan. Block-sparse rpca for consistent foreground detection. In ECCV, 2012.
    • (2012) ECCV
    • Gao, Z.1    Cheong, L.-F.2    Shan, M.3
  • 6
    • 84875864128 scopus 로고    scopus 로고
    • Foreground detection based on low-rank and block-sparse matrix decomposition
    • C. Guyon, T. Bouwmans, and E.-H. Zahzah. Foreground detection based on low-rank and block-sparse matrix decomposition. In ICIP, 2012.
    • (2012) ICIP
    • Guyon, C.1    Bouwmans, T.2    Zahzah, E.-H.3
  • 7
    • 0742286180 scopus 로고    scopus 로고
    • What energy functions can be minimized via graph cuts?
    • V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? PAMI, 26(2), 2004.
    • (2004) PAMI , vol.26 , Issue.2
    • Kolmogorov, V.1    Zabih, R.2
  • 8
    • 77956034602 scopus 로고    scopus 로고
    • Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories
    • S. Rao, R. Tron, R. Vidal, and Y. Ma. Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories. PAMI, 32(10), 2010.
    • (2010) PAMI , vol.32 , Issue.10
    • Rao, S.1    Tron, R.2    Vidal, R.3    Ma, Y.4
  • 9
    • 84864124096 scopus 로고    scopus 로고
    • Video saliency detection with robust temporal alignment and local-global spatial contrast
    • Z. Ren, L.-T. Chia, and D. Rajan. Video saliency detection with robust temporal alignment and local-global spatial contrast. In ICMR, 2012.
    • (2012) ICMR
    • Ren, Z.1    Chia, L.-T.2    Rajan, D.3
  • 10
    • 77953221169 scopus 로고    scopus 로고
    • Background subtraction for freely moving cameras
    • Y. Sheikh, O. Javed, and T. Kanade. Background subtraction for freely moving cameras. In ICCV, 2009.
    • (2009) ICCV
    • Sheikh, Y.1    Javed, O.2    Kanade, T.3
  • 11
    • 0026943737 scopus 로고
    • Shape and motion from image streams under orthography: A factorization method
    • C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. IJCV, 9(2), 1992.
    • (1992) IJCV , vol.9 , Issue.2
    • Tomasi, C.1    Kanade, T.2
  • 12
    • 34948881815 scopus 로고    scopus 로고
    • A benchmark for the comparison of 3-d motion segmentation algorithms
    • R. Tron and R. Vidal. A benchmark for the comparison of 3-d motion segmentation algorithms. In CVPR, 2007.
    • (2007) CVPR
    • Tron, R.1    Vidal, R.2
  • 13
    • 84863367863 scopus 로고    scopus 로고
    • Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization
    • J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In NIPS, 2009.
    • (2009) NIPS
    • Wright, J.1    Ganesh, A.2    Rao, S.3    Peng, Y.4    Ma, Y.5
  • 14
    • 34948837349 scopus 로고    scopus 로고
    • A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate
    • J. Yan and M. Pollefeys. A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In ECCV, 2006.
    • (2006) ECCV
    • Yan, J.1    Pollefeys, M.2
  • 15
    • 84867892499 scopus 로고    scopus 로고
    • Moving object detection by detecting contiguous outliers in the low-rank representation
    • in press
    • X. Zhou, C. Yang, and W. Yu. Moving object detection by detecting contiguous outliers in the low-rank representation. PAMI, in press, 2012.
    • (2012) PAMI
    • Zhou, X.1    Yang, C.2    Yu, W.3
  • 16
    • 10044240378 scopus 로고    scopus 로고
    • Improved adaptive gaussian mixture model for background subtraction
    • Z. Zivkovic. Improved adaptive gaussian mixture model for background subtraction. In ICPR, 2004.
    • (2004) ICPR
    • Zivkovic, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.