메뉴 건너뛰기




Volumn , Issue , 2013, Pages 524-531

A divide-and-conquer method for scalable low-rank latent matrix pursuit

Author keywords

divide and conquer method; low rank matrices; prediction fushion

Indexed keywords

ACCURATE MODELING; COMPUTER VISION APPLICATIONS; DIVIDE AND CONQUER; LOW-RANK MATRICES; OBJECT CATEGORIZATION; OPTIMIZATION ALGORITHMS; SCALABLE SOLUTION; VIDEO EVENT DETECTIONS;

EID: 84887368639     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.74     Document Type: Conference Paper
Times cited : (11)

References (21)
  • 1
    • 14344252374 scopus 로고    scopus 로고
    • Multiple kernel learning, conic duality, and the SMO algorithm
    • 1, 2
    • F. Bach, G. Lanckriet and M. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In ICML, 2004. 1, 2
    • (2004) ICML
    • Bach, F.1    Lanckriet, G.2    Jordan, M.3
  • 2
    • 70049111956 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • 5
    • J-F. Cai, E. J. Candes and Z. Shen. A singular value thresholding algorithm for matrix completion. UCLA CAM Report, 2008. 5
    • (2008) UCLA CAM Report
    • Cai, J.-F.1    Candes, E.J.2    Shen, Z.3
  • 3
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • 2, 3, 4
    • E. Candes, X. Li, Y. Ma and J. Wright. Robust principal component analysis? JACM, 58(1):1-37, 2009. 2, 3, 4
    • (2009) JACM , vol.58 , Issue.1 , pp. 1-37
    • Candes, E.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 4
    • 85067032737 scopus 로고    scopus 로고
    • On feature combination for multiclass object classification
    • 1, 2
    • P. Gehler and S. Nowozin. On feature combination for multiclass object classification. In ICCV, 2009. 1, 2
    • (2009) ICCV
    • Gehler, P.1    Nowozin, S.2
  • 5
    • 80052681745 scopus 로고    scopus 로고
    • Rank aggregation via nuclear norm minimization
    • 1, 3
    • D. F. Gleich and L. H. Lim. Rank aggregation via nuclear norm minimization. In KDD, 2011. 1, 3
    • (2011) KDD
    • Gleich, D.F.1    Lim, L.H.2
  • 7
    • 79959766559 scopus 로고    scopus 로고
    • Consumer video understanding: A benchmark database and an evaluation of human and machine performance
    • 1, 6
    • Y-G. Jiang, G. Ye, S-F. Chang, D. Ellis and A. C. Loui. Consumer video understanding: A benchmark database and an evaluation of human and machine performance. In ICMR, 2011. 1, 6
    • (2011) ICMR
    • Jiang, Y.-G.1    Ye, G.2    Chang, S.-F.3    Ellis, D.4    Loui, A.C.5
  • 10
    • 77956529193 scopus 로고    scopus 로고
    • Robust subspace segmentation by low-rank representation
    • 4
    • G-C. Liu, Z-C. Lin and Y. Yu. Robust Subspace Segmentation by Low-Rank Representation. In ICML, 2010. 4
    • (2010) ICML
    • Liu, G.-C.1    Lin, Z.-C.2    Yu, Y.3
  • 11
    • 84874199238 scopus 로고    scopus 로고
    • Active subspace: Towards scalable low-rank learning
    • 4
    • G-C. Liu and S-C. Yan. Active Subspace: Towards Scalable Low-Rank Learning. In Neural Computation, 24(12):3371-3394, 2012. 4
    • (2012) Neural Computation , vol.24 , Issue.12 , pp. 3371-3394
    • Liu, G.-C.1    Yan, S.-C.2
  • 12
    • 84866669326 scopus 로고    scopus 로고
    • Fixed-Rank representation for unsupervised visual learning
    • 4
    • R-S. Liu, Z-C. Lin, F. Torre and Z-X. Su. Fixed-Rank Representation for Unsupervised Visual Learning. In CVPR, 2012. 4
    • (2012) CVPR
    • Liu, R.-S.1    Lin, Z.-C.2    Torre, F.3    Su, Z.-X.4
  • 14
    • 37549016464 scopus 로고    scopus 로고
    • Likelihood ratio-based biometric score fusion
    • 1, 2
    • K. Nandakumar, Y. Chen, S. C. Dass and A. Jain. Likelihood Ratio-Based Biometric Score Fusion. In TPAMI, 30(2):342-347, 2008. 1, 2
    • (2008) TPAMI , vol.30 , Issue.2 , pp. 342-347
    • Nandakumar, K.1    Chen, Y.2    Dass, S.C.3    Jain, A.4
  • 15
    • 33845570201 scopus 로고    scopus 로고
    • A visual vocabulary for flower classification
    • 6
    • M. E. Nilsback and A. Zisserman. A Visual Vocabulary for Flower Classification. In CVPR, 2006. 6
    • (2006) CVPR
    • Nilsback, M.E.1    Zisserman, A.2
  • 17
    • 80052891624 scopus 로고    scopus 로고
    • Contextualizing object detection and classification
    • 1
    • Z. Song, Q. Chen, Z-Y. Huang, Y. Hua and S-C. Yan. Contextualizing object detection and classification. In CVPR, 2011. 1
    • (2011) CVPR
    • Song, Z.1    Chen, Q.2    Huang, Z.-Y.3    Hua, Y.4    Yan, S.-C.5
  • 18
    • 67650999671 scopus 로고    scopus 로고
    • Optimal classifier fusion in a non-bayesian probabilistic framework
    • 1, 2
    • O. R. Terrades, E. Valveny and S. Tabbone. Optimal Classifier Fusion in a Non-Bayesian Probabilistic Framework. In TPAMI, 31(9):1630-1644, 2009. 1, 2
    • (2009) TPAMI , vol.31 , Issue.9 , pp. 1630-1644
    • Terrades, O.R.1    Valveny, E.2    Tabbone, S.3
  • 20
    • 0000350486 scopus 로고    scopus 로고
    • Using the Nystrom method to speed up kernel machines
    • 4
    • C. Williams and M. Seeger. Using the Nystrom method to speed up kernel machines. In NIPS, 2000. 4
    • (2000) NIPS
    • Williams, C.1    Seeger, M.2
  • 21
    • 84866712367 scopus 로고    scopus 로고
    • Robust late fusion with rank minimization
    • 1, 2, 3, 4, 5, 6
    • G-N. Ye, D. Liu, I-H. Jhuo and S-F. Chang. Robust Late Fusion with Rank Minimization. In CVPR, 2012. 1, 2, 3, 4, 5, 6
    • (2012) CVPR
    • Ye, G.-N.1    Liu, D.2    Jhuo, I.-H.3    Chang, S.-F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.