메뉴 건너뛰기




Volumn 25, Issue 10, 2013, Pages 2682-2708

A principled dimension-reduction method for the population density approach to modeling networks of neurons with synaptic dynamics

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; COMPUTER SIMULATION; CYTOLOGY; EXCITATORY POSTSYNAPTIC POTENTIAL; MONTE CARLO METHOD; NERVE CELL; NERVE CELL NETWORK; PHYSIOLOGY; POISSON DISTRIBUTION; POPULATION; PROBABILITY; REPRODUCIBILITY; SYNAPSE;

EID: 84887339838     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00489     Document Type: Article
Times cited : (7)

References (51)
  • 1
    • 22244458151 scopus 로고
    • Asynchronous states in networks of pulsecoupled oscillators
    • Abbott, L. F., & van Vreeswijk, C. (1993). Asynchronous states in networks of pulsecoupled oscillators. Physical Review E, 48, 1483-1490.
    • (1993) Physical Review E , vol.48 , pp. 1483-1490
    • Abbott, L.F.1    Van Vreeswijk, C.2
  • 2
    • 33845394008 scopus 로고    scopus 로고
    • Population density methods for stochastic neurons with a 2-D state space: Application to neural networks with realistic synaptic kinetics
    • Apfaltrer, F., Ly, C., & Tranchina, D. (2006). Population density methods for stochastic neurons with a 2-D state space: Application to neural networks with realistic synaptic kinetics. Network: Computation in Neural Systems, 17, 373-418.
    • (2006) Network: Computation in Neural Systems , vol.17 , pp. 373-418
    • Apfaltrer, F.1    Ly, C.2    Tranchina, D.3
  • 3
    • 35348824287 scopus 로고    scopus 로고
    • Binomial parameters differ across neocortical layers and with different classes of connections in adult rat and cat neocortex
    • Bremaud, A., West, D., & Thomson, A. (2007). Binomial parameters differ across neocortical layers and with different classes of connections in adult rat and cat neocortex. Proceedings of the National Academy of Sciences, 104, 14134-14139.
    • (2007) Proceedings of the National Academy of Sciences , vol.104 , pp. 14134-14139
    • Bremaud, A.1    West, D.2    Thomson, A.3
  • 4
    • 0034006515 scopus 로고    scopus 로고
    • Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
    • Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183-208.
    • (2000) Journal of Computational Neuroscience , vol.8 , pp. 183-208
    • Brunel, N.1
  • 5
    • 6644226801 scopus 로고    scopus 로고
    • Effects of synaptic noise and filtering on the frequency response of spiking neurons
    • Brunel, N., Chance, F., Fourcaud, N., & Abbott, L. (2001). Effects of synaptic noise and filtering on the frequency response of spiking neurons. Physical Review Letters, 86, 2186-2189.
    • (2001) Physical Review Letters , vol.86 , pp. 2186-2189
    • Brunel, N.1    Chance, F.2    Fourcaud, N.3    Abbott, L.4
  • 6
    • 0033210816 scopus 로고    scopus 로고
    • Fast global oscillations in networks of integrate-andfire neurons with low firing rates
    • Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-andfire neurons with low firing rates. Neural Computation, 11, 1621-1671.
    • (1999) Neural Computation , vol.11 , pp. 1621-1671
    • Brunel, N.1    Hakim, V.2
  • 7
    • 0041360352 scopus 로고    scopus 로고
    • Firing rate of the noisy quadratic integrate-and-fire neuron
    • Brunel, N., & Latham, P. E. (2003). Firing rate of the noisy quadratic integrate-and-fire neuron. Neural Computation, 15, 2281-2306.
    • (2003) Neural Computation , vol.15 , pp. 2281-2306
    • Brunel, N.1    Latham, P.E.2
  • 8
    • 0033940003 scopus 로고    scopus 로고
    • Interspike interval variability for balanced networks with reversal potentials for large numbers of inputs
    • Burkitt, A. (2000). Interspike interval variability for balanced networks with reversal potentials for large numbers of inputs. Neurocomputing, 33, 313-321.
    • (2000) Neurocomputing , vol.33 , pp. 313-321
    • Burkitt, A.1
  • 10
    • 33745730999 scopus 로고    scopus 로고
    • A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties
    • Burkitt, A. N. (2006b). A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Biological Cybernetics, 95, 97-112.
    • (2006) Biological Cybernetics , vol.95 , pp. 97-112
    • Burkitt, A.N.1
  • 11
    • 78650564252 scopus 로고    scopus 로고
    • A numerical solver for a nonlinear Fokker-Planck equation representation of neuronal network dynamics
    • Cáceres, M., Carrillo, J., & Tao, L. (2011). A numerical solver for a nonlinear Fokker-Planck equation representation of neuronal network dynamics. Journal of Computational Physics, 230, 1084-1099.
    • (2011) Journal of Computational Physics , vol.230 , pp. 1084-1099
    • Cáceres, M.1    Carrillo, J.2    Tao, L.3
  • 13
    • 2442679125 scopus 로고    scopus 로고
    • An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex
    • Cai, D., Tao, L., Shelley, M., & McLaughlin, D. (2004). An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proceedings of the National Academy of Sciences, 101, 7757-7762.
    • (2004) Proceedings of the National Academy of Sciences , vol.101 , pp. 7757-7762
    • Cai, D.1    Tao, L.2    Shelley, M.3    McLaughlin, D.4
  • 15
    • 0037104631 scopus 로고    scopus 로고
    • Gainmodulation frombackground synaptic input
    • Chance, F., Abbott, L., & Reyes, A. (2002). Gainmodulation frombackground synaptic input. Neuron, 35, 773-782.
    • (2002) Neuron , vol.35 , pp. 773-782
    • Chance, F.1    Abbott, L.2    Reyes, A.3
  • 16
    • 38349142170 scopus 로고    scopus 로고
    • Efficient evaluation of neuron populations receiving colored-noise current based on a refractory density method
    • Chizhov, A., & Graham, L. (2008). Efficient evaluation of neuron populations receiving colored-noise current based on a refractory density method. Physical Review E, 77, 11910.
    • (2008) Physical Review E , vol.77 , pp. 11910
    • Chizhov, A.1    Graham, L.2
  • 17
    • 84995332295 scopus 로고    scopus 로고
    • Stochastic synchronization in finite size spiking networks
    • Doiron, B., Rinzel, J., & Reyes, A. (2006). Stochastic synchronization in finite size spiking networks. Physical Review E, 74, 030903.
    • (2006) Physical Review E , vol.74 , pp. 030903
    • Doiron, B.1    Rinzel, J.2    Reyes, A.3
  • 18
    • 77958032223 scopus 로고    scopus 로고
    • A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs
    • Faugeras, O., Touboul, J., & Cessac, B. (2009). A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs. Frontiers in Computational Neuroscience, 3.
    • (2009) Frontiers in Computational Neuroscience , pp. 3
    • Faugeras, O.1    Touboul, J.2    Cessac, B.3
  • 19
    • 0036716145 scopus 로고    scopus 로고
    • Dynamics of the firing probability of noisy integrate-and-fire neuron
    • Fourcaud, N., & Brunel, N. (2002). Dynamics of the firing probability of noisy integrate-and-fire neuron. Neural Computation, 14, 2057-2110.
    • (2002) Neural Computation , vol.14 , pp. 2057-2110
    • Fourcaud, N.1    Brunel, N.2
  • 20
    • 0033638709 scopus 로고    scopus 로고
    • EPSP amplification and the precision of spike timing in hippocampal neurons
    • Fricker, D., & Miles, R. (2000). EPSP amplification and the precision of spike timing in hippocampal neurons. Neuron, 28, 559-569.
    • (2000) Neuron , vol.28 , pp. 559-569
    • Fricker, D.1    Miles, R.2
  • 21
    • 0004017463 scopus 로고    scopus 로고
    • Spiking neuron models
    • Cambridge: Cambridge University Press
    • Gerstner, W., & Kistler, W. (2002). Spiking neuron models. Cambridge: Cambridge University Press.
    • (2002)
    • Gerstner, W.1    Kistler, W.2
  • 22
    • 0042736230 scopus 로고    scopus 로고
    • Population density methods for large-scale modeling of neuronal networks with realistic synaptic kinetics: Cutting the dimension down to size
    • Haskell, E., Nykamp, D. Q., & Tranchina, D. (2001). Population density methods for large-scale modeling of neuronal networks with realistic synaptic kinetics: Cutting the dimension down to size. Network: Compututation in Neural Systems, 12, 141-174.
    • (2001) Network: Compututation in Neural Systems , vol.12 , pp. 141-174
    • Haskell, E.1    Nykamp, D.Q.2    Tranchina, D.3
  • 23
    • 33747315080 scopus 로고    scopus 로고
    • A multivariate population density model of the dLGN/PGN relay
    • doi:10.1007/s10827-006-7753-2
    • Huertas, M. A., & Smith, G. D. (2006). A multivariate population density model of the dLGN/PGN relay. Journal of Computational Neuroscience, 21, 1573-6873. doi:10.1007/s10827-006-7753-2
    • (2006) Journal of Computational Neuroscience , vol.21 , pp. 1573-6873
    • Huertas, M.A.1    Smith, G.D.2
  • 24
    • 0034180383 scopus 로고    scopus 로고
    • The approach of a neuron population firing rate to a new equilibrium: An exact theoretical result
    • Knight, B.W., Omurtag, A., & Sirovich, L. (2000). The approach of a neuron population firing rate to a new equilibrium: An exact theoretical result. Neural Computation, 12, 1045-1055.
    • (2000) Neural Computation , vol.12 , pp. 1045-1055
    • Knight, B.W.1    Omurtag, A.2    Sirovich, L.3
  • 25
    • 84919509027 scopus 로고    scopus 로고
    • Stochastic methods in neuroscience
    • New York: Oxford University Press
    • Laing, C., & Lord, G. (2009). Stochastic methods in neuroscience. New York: Oxford University Press.
    • (2009)
    • Laing, C.1    Lord, G.2
  • 26
    • 65049083819 scopus 로고    scopus 로고
    • A kinetic theory approach to capturing interneuronal correlation: The feed-forward case
    • Liu, C., & Nykamp, D. (2009). A kinetic theory approach to capturing interneuronal correlation: The feed-forward case. Journal of Computational Neuroscience, 26(3), 339-368.
    • (2009) Journal of Computational Neuroscience , vol.26 , Issue.3 , pp. 339-368
    • Liu, C.1    Nykamp, D.2
  • 27
    • 66249146633 scopus 로고    scopus 로고
    • Divisive gain modulation with dynamic stimuli in integrate-and-fire neurons
    • Ly, C., & Doiron, B. (2009). Divisive gain modulation with dynamic stimuli in integrate-and-fire neurons. PLoS Computational Biology, 5(4), e1000365.
    • (2009) PLoS Computational Biology , vol.5 , Issue.4
    • Ly, C.1    Doiron, B.2
  • 28
    • 34548013119 scopus 로고    scopus 로고
    • Critical analysis of dimension reduction by amoment closure method in a population density approach to neural network modeling
    • Ly, C., & Tranchina, D. (2007). Critical analysis of dimension reduction by amoment closure method in a population density approach to neural network modeling. Neural Computation, 19, 2032-2092.
    • (2007) Neural Computation , vol.19 , pp. 2032-2092
    • Ly, C.1    Tranchina, D.2
  • 29
    • 66249117496 scopus 로고    scopus 로고
    • Spike train statistics and dynamicswith synaptic input from any renewal process: A population density approach
    • Ly, C., & Tranchina, D. (2009). Spike train statistics and dynamicswith synaptic input from any renewal process: A population density approach. Neural Computation, 21, 360-396.
    • (2009) Neural Computation , vol.21 , pp. 360-396
    • Ly, C.1    Tranchina, D.2
  • 30
  • 31
    • 0026044988 scopus 로고
    • Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro
    • Mason, A., Nicoll, A., & Stratford, K. (1991). Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro. Journal of Neuroscience, 11, 72-84.
    • (1991) Journal of Neuroscience , vol.11 , pp. 72-84
    • Mason, A.1    Nicoll, A.2    Stratford, K.3
  • 32
    • 41349123474 scopus 로고    scopus 로고
    • Finite-size dynamics of inhibitory and excitatory interacting spiking neurons
    • Mattia, M., & Del Giudice, P. (2004). Finite-size dynamics of inhibitory and excitatory interacting spiking neurons. Physical Review E, 70, 052903.
    • (2004) Physical Review E , vol.70 , pp. 052903
    • Mattia, M.1    Del Giudice, P.2
  • 33
    • 0019816888 scopus 로고
    • Synaptic efficacy and EPSP summation in granule cells of rat fascia dentata studied in vitro
    • McNaughton, B. L., Barnes, C. A., & Anderson, P. (1981). Synaptic efficacy and EPSP summation in granule cells of rat fascia dentata studied in vitro. Journal of Neurophysiology, 46, 952-966.
    • (1981) Journal of Neurophysiology , vol.46 , pp. 952-966
    • McNaughton, B.L.1    Barnes, C.A.2    Anderson, P.3
  • 34
    • 1442313269 scopus 로고    scopus 로고
    • Role of synaptic filtering on the firing response of simple model neurons
    • Moreno-Bote, R., & Parga, N. (2004). Role of synaptic filtering on the firing response of simple model neurons. Physical Review Letters, 92, 028102.
    • (2004) Physical Review Letters , vol.92 , pp. 028102
    • Moreno-Bote, R.1    Parga, N.2
  • 35
    • 32644485094 scopus 로고    scopus 로고
    • Auto-and crosscorrelograms for the spike response of leaky integrate-and-fire neurons with slow synapses
    • Moreno-Bote, R., & Parga, N. (2006). Auto-and crosscorrelograms for the spike response of leaky integrate-and-fire neurons with slow synapses. Physical Review Letters, 96, 028101.
    • (2006) Physical Review Letters , vol.96 , pp. 028101
    • Moreno-Bote, R.1    Parga, N.2
  • 36
    • 36248947984 scopus 로고    scopus 로고
    • Spike-frequency adapting neural ensembles: Beyond mean adaptation and renewal theories
    • Muller, E., Buesing, L., Schemmel, J., & Meier, K. (2007). Spike-frequency adapting neural ensembles: Beyond mean adaptation and renewal theories. Neural Computation, 19, 2958-3010.
    • (2007) Neural Computation , vol.19 , pp. 2958-3010
    • Muller, E.1    Buesing, L.2    Schemmel, J.3    Meier, K.4
  • 37
    • 0034076273 scopus 로고    scopus 로고
    • A population density approach that facilitates large-scale modeling of neural networks: Analysis and an application to orientation tuning
    • Nykamp, D. Q., & Tranchina, D. (2000). A population density approach that facilitates large-scale modeling of neural networks: Analysis and an application to orientation tuning. Journal of Computational Neuroscience, 8, 19-50.
    • (2000) Journal of Computational Neuroscience , vol.8 , pp. 19-50
    • Nykamp, D.Q.1    Tranchina, D.2
  • 38
    • 0035289566 scopus 로고    scopus 로고
    • Apopulation density approach that facilitates large-scale modeling of neural networks: Extension to slow inhibitory synapses
    • Nykamp, D.Q., & Tranchina, D. (2001). Apopulation density approach that facilitates large-scale modeling of neural networks: Extension to slow inhibitory synapses. Neural Computation, 13, 511-546.
    • (2001) Neural Computation , vol.13 , pp. 511-546
    • Nykamp, D.Q.1    Tranchina, D.2
  • 39
    • 33846354948 scopus 로고    scopus 로고
    • Maximum-entropy closures for kinetic theories of neuronal network dynamics
    • Rangan, A., & Cai, D. (2006). Maximum-entropy closures for kinetic theories of neuronal network dynamics. Physical Review Letters, 96, 178101.
    • (2006) Physical Review Letters , vol.96 , pp. 178101
    • Rangan, A.1    Cai, D.2
  • 40
    • 33846367751 scopus 로고    scopus 로고
    • Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics
    • Rangan, A., Cai, D., & Tao, L. (2007). Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics. Journal of Computational Physics, 221, 781-798.
    • (2007) Journal of Computational Physics , vol.221 , pp. 781-798
    • Rangan, A.1    Cai, D.2    Tao, L.3
  • 41
    • 42449108706 scopus 로고    scopus 로고
    • Kinetic theory for neuronal networks with fast and slow excitatory conductances driven by the same spike train
    • Rangan, A., Kovaçiç, G., & Cai, D. (2008). Kinetic theory for neuronal networks with fast and slow excitatory conductances driven by the same spike train. Physical Review E, 77, 041915.
    • (2008) Physical Review E , vol.77 , pp. 041915
    • Rangan, A.1    Kovaçiç, G.2    Cai, D.3
  • 42
    • 77958128002 scopus 로고    scopus 로고
    • Firing-rate response of a neuron receiving excitatory and inhibitory synaptic shot noise
    • Richardson, M., & Swarbrick, R. (2010). Firing-rate response of a neuron receiving excitatory and inhibitory synaptic shot noise. Physical Review Letters, 105, 178102.
    • (2010) Physical Review Letters , vol.105 , pp. 178102
    • Richardson, M.1    Swarbrick, R.2
  • 43
    • 84860920313 scopus 로고    scopus 로고
    • Finite volume and asymptotic methods for stochastic neuron models with correlated inputs
    • Rosenbaum, R., Marpeau, F., Ma, J., Barua, A., & Josić, K. (2012). Finite volume and asymptotic methods for stochastic neuron models with correlated inputs. Journal of Mathematical Biology, 65, 1-34.
    • (2012) Journal of Mathematical Biology , vol.65 , pp. 1-34
    • Rosenbaum, R.1    Marpeau, F.2    Ma, J.3    Barua, A.4    Josić, K.5
  • 44
    • 0025218757 scopus 로고
    • The time course and amplitude of epsps evoked at synapses between pairs of CA3/CA1 neurons in the hippocampal slice
    • Sayer, R., Friedlander, M., & Redman, S. (1990). The time course and amplitude of epsps evoked at synapses between pairs of CA3/CA1 neurons in the hippocampal slice. Journal of Neuroscience, 10, 826-836.
    • (1990) Journal of Neuroscience , vol.10 , pp. 826-836
    • Sayer, R.1    Friedlander, M.2    Redman, S.3
  • 45
    • 43449083226 scopus 로고    scopus 로고
    • Populations of tightly coupled neurons: The RGC/LGN system
    • Sirovich, L. (2008). Populations of tightly coupled neurons: The RGC/LGN system. Neural Computation, 20, 1179-1210.
    • (2008) Neural Computation , vol.20 , pp. 1179-1210
    • Sirovich, L.1
  • 46
    • 36849042690 scopus 로고    scopus 로고
    • Stochastic dynamics of a finite-size spiking neural network
    • Soula, H., & Chow, C. (2007). Stochastic dynamics of a finite-size spiking neural network. Neural Computation, 19, 3262-3292.
    • (2007) Neural Computation , vol.19 , pp. 3262-3292
    • Soula, H.1    Chow, C.2
  • 47
    • 84863878722 scopus 로고    scopus 로고
    • Improved dimensionally-reduced visual cortical network using stochastic noise modeling
    • Tao, L., Praissman, J., & Sornborger, A. (2012). Improved dimensionally-reduced visual cortical network using stochastic noise modeling. Journal of Computational Neuroscience, 32, 367-376.
    • (2012) Journal of Computational Neuroscience , vol.32 , pp. 367-376
    • Tao, L.1    Praissman, J.2    Sornborger, A.3
  • 48
    • 77549085155 scopus 로고    scopus 로고
    • Dimensionally-reduced visual cortical network model predicts network response and connects system-and cellular-level descriptions
    • Tao, L., & Sornborger, A. (2010). Dimensionally-reduced visual cortical network model predicts network response and connects system-and cellular-level descriptions. Journal of Computational Neuroscience, 28, 91-106.
    • (2010) Journal of Computational Neuroscience , vol.28 , pp. 91-106
    • Tao, L.1    Sornborger, A.2
  • 49
    • 0024259982 scopus 로고
    • Voltage-dependent currents prolong single-axon postsynaptic potentials in Layer 3 pyramidal neurons in rate neocortical slices
    • Thompson, A.M., Girdlestone, D., & West, D. C. (1988). Voltage-dependent currents prolong single-axon postsynaptic potentials in Layer 3 pyramidal neurons in rate neocortical slices. Journal of Neurophysiology, 60, 1896-1907.
    • (1988) Journal of Neurophysiology , vol.60 , pp. 1896-1907
    • Thompson, A.M.1    Girdlestone, D.2    West, D.C.3
  • 50
    • 0003562697 scopus 로고
    • Introduction to theoretical neurobiology: Linear cable theory and dendritic structure and stochastic theories
    • Cambridge: Cambridge University Press
    • Tuckwell, H. C. (1988). Introduction to theoretical neurobiology: Vol. 1, Linear cable theory and dendritic structure and stochastic theories. Cambridge: Cambridge University Press.
    • (1988) , vol.1
    • Tuckwell, H.C.1
  • 51
    • 0034161414 scopus 로고    scopus 로고
    • Properties of horizontal and vertical inputs to pyramidal cells in the superficial layers of the cat visual Cortex
    • Yoshimura, Y., Sato, H., Imamura, K., & Watanabe, Y. (2000). Properties of horizontal and vertical inputs to pyramidal cells in the superficial layers of the cat visual Cortex. Journal of Neuroscience, 20, 1931-1940.
    • (2000) Journal of Neuroscience , vol.20 , pp. 1931-1940
    • Yoshimura, Y.1    Sato, H.2    Imamura, K.3    Watanabe, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.