-
3
-
-
85028503334
-
-
Berlin: Springer, Springer Series in Computational Neuroscience
-
Schultheiss NW, Prinz AA, Butera RJ: Phase Response Curves in Neuroscience Theory, Experiment, and Analysis. Berlin: Springer; 2012. [Springer Series in Computational Neuroscience, vol 6.]
-
(2012)
Phase Response Curves In Neuroscience Theory, Experiment, and Analysis
, vol.6
-
-
Schultheiss, N.W.1
Prinz, A.A.2
Butera, R.J.3
-
4
-
-
23044468737
-
Phase-response curves give the responses of neurons to transient inputs
-
Gutkin BS, Ermentrout GB, Reyes AD: Phase-response curves give the responses of neurons to transient inputs. J Neurophysiol 2005, 94(2):1623-1635.
-
(2005)
J Neurophysiol
, vol.94
, Issue.2
, pp. 1623-1635
-
-
Gutkin, B.S.1
Ermentrout, G.B.2
Reyes, A.D.3
-
5
-
-
83055196595
-
The variance of phase-resetting curves
-
Ermentrout GB, Beverlin B, Troyer T, Netoff TI: The variance of phase-resetting curves. J Comput Neurosci 2011, 31(2):185-197.
-
(2011)
J Comput Neurosci
, vol.31
, Issue.2
, pp. 185-197
-
-
Ermentrout, G.B.1
Beverlin, B.2
Troyer, T.3
Netoff, T.I.4
-
6
-
-
80052440625
-
Non-weak inhibition and phase resetting at negative values of phase in cells with fast-slow dynamics at hyperpolarized potentials
-
doi:10.1007/s10827-010-0292-x
-
Oh M, Matveev V: Non-weak inhibition and phase resetting at negative values of phase in cells with fast-slow dynamics at hyperpolarized potentials. J Comput Neurosci 2011, 31:31-42. doi:10.1007/s10827-010-0292-x.
-
(2011)
J Comput Neurosci
, vol.31
, pp. 31-42
-
-
Oh, M.1
Matveev, V.2
-
7
-
-
0016194585
-
Patterns of phase compromise in biological cycles
-
Winfree AT: Patterns of phase compromise in biological cycles. J Math Biol 1974/1975, 1:73-95.
-
(1974)
J Math Biol
, vol.1
, pp. 73-95
-
-
Winfree, A.T.1
-
8
-
-
85013998658
-
A computational and geometric approach to phase resetting curves and surfaces
-
doi:10.1137/080737666
-
Guillamon A, Huguet G: A computational and geometric approach to phase resetting curves and surfaces. SIAM J Appl Dyn Syst 2009, 8(3):1005-1042. doi:10.1137/080737666.
-
(2009)
SIAM J Appl Dyn Syst
, vol.8
, Issue.3
, pp. 1005-1042
-
-
Guillamon, A.1
Huguet, G.2
-
9
-
-
84887303917
-
Computation of limit cycles and their isochrons: Fast algorithms and their convergence
-
in press
-
Huguet G, de la Llave R: Computation of limit cycles and their isochrons: fast algorithms and their convergence. SIAM J Appl Dyn Syst 2013, in press.
-
(2013)
SIAM J Appl Dyn Syst
-
-
Huguet, G.1
de la Llave, R.2
-
10
-
-
79251562186
-
Continuation-based computation of global isochrons
-
doi:10.1137/090777244, [With online multimedia enhancements.]
-
Osinga HM, Moehlis J: Continuation-based computation of global isochrons. SIAM J Appl Dyn Syst 2010, 9(4):1201-1228. doi:10.1137/090777244. [With online multimedia enhancements.]
-
(2010)
SIAM J Appl Dyn Syst
, vol.9
, Issue.4
, pp. 1201-1228
-
-
Osinga, H.M.1
Moehlis, J.2
-
11
-
-
77958051473
-
Dissecting the phase response of a model bursting neuron
-
doi:10.1137/090773519
-
Sherwood WE, Guckenheimer J: Dissecting the phase response of a model bursting neuron. SIAM J Appl Dyn Syst 2010, 9(3):659-703. doi:10.1137/090773519.
-
(2010)
SIAM J Appl Dyn Syst
, vol.9
, Issue.3
, pp. 659-703
-
-
Sherwood, W.E.1
Guckenheimer, J.2
-
12
-
-
84866924926
-
On the use of Fourier averages to compute the global isochrons of (quasi)periodic dynamics
-
Mauroy A, Mezić I: On the use of Fourier averages to compute the global isochrons of (quasi)periodic dynamics. Chaos 2012, 22:033112.
-
(2012)
Chaos
, vol.22
, pp. 033112
-
-
Mauroy, A.1
Mezić, I.2
-
13
-
-
33846421760
-
Multiple pulse interactions and averaging in systems of coupled neural oscillators
-
Ermentrout GB, Kopell N: Multiple pulse interactions and averaging in systems of coupled neural oscillators. J Math Biol 1991, 29(3):195-217.
-
(1991)
J Math Biol
, vol.29
, Issue.3
, pp. 195-217
-
-
Ermentrout, G.B.1
Kopell, N.2
-
14
-
-
1542351229
-
On the phase reduction and response dynamics of neural oscillator populations
-
Brown E, Holmes P, Moehlis J: On the phase reduction and response dynamics of neural oscillator populations. Neural Comput 2004, 16:673-715.
-
(2004)
Neural Comput
, vol.16
, pp. 673-715
-
-
Brown, E.1
Holmes, P.2
Moehlis, J.3
-
15
-
-
0038123490
-
Stability analysis of rings of pulse-coupled oscillators: The effect of phase resetting in the second cycle after the pulse is important at synchrony and for long pulses
-
Oprisan SA, Canavier C: Stability analysis of rings of pulse-coupled oscillators: the effect of phase resetting in the second cycle after the pulse is important at synchrony and for long pulses. Differ Equ Dyn Syst 2001, 9:243-258.
-
(2001)
Differ Equ Dyn Syst
, vol.9
, pp. 243-258
-
-
Oprisan, S.A.1
Canavier, C.2
-
16
-
-
16644367884
-
Phase resetting and phase locking in hybrid circuits of one model and one biological neuron
-
doi:10.1529/biophysj.104.046193
-
Oprisan SA, Prinz AA, Canavier CC: Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophys J 2004, 87(4):2283-2298. doi:10.1529/biophysj.104.046193.
-
(2004)
Biophys J
, vol.87
, Issue.4
, pp. 2283-2298
-
-
Oprisan, S.A.1
Prinz, A.A.2
Canavier, C.C.3
-
17
-
-
38549099593
-
Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved
-
doi:10.1007/ s10827-007-0040-z
-
Maran S, Canavier C: Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved. J Comput Neurosci 2008, 24:37-55. doi:10.1007/ s10827-007-0040-z.
-
(2008)
J Comput Neurosci
, vol.24
, pp. 37-55
-
-
Maran, S.1
Canavier, C.2
-
18
-
-
84871965667
-
Limitations of perturbative techniques in the analysis of rhythms and oscillations
-
doi:10.1007/s00285-0120506-0
-
Lin KK, Wedgwood KCA, Coombes S, Young LS: Limitations of perturbative techniques in the analysis of rhythms and oscillations. J Math Biol 2013, 66(1-2):139-161. doi:10.1007/s00285-0120506-0.
-
(2013)
J Math Biol
, vol.66
, Issue.1-2
, pp. 139-161
-
-
Lin, K.K.1
Wedgwood, K.C.A.2
Coombes, S.3
Young, L.S.4
-
19
-
-
0030195232
-
Type I membranes, phase resetting curves, and synchrony
-
Ermentrout GB: Type I membranes, phase resetting curves, and synchrony. Neural Comput 1996, 8:979-1001.
-
(1996)
Neural Comput
, vol.8
, pp. 979-1001
-
-
Ermentrout, G.B.1
-
20
-
-
0016314153
-
Isochrons and phaseless sets
-
Guckenheimer J: Isochrons and phaseless sets. J Math Biol 1974/1975, 1(3):259-273.
-
(1974)
J Math Biol
, vol.1
, Issue.3
, pp. 259-273
-
-
Guckenheimer, J.1
-
21
-
-
27744477144
-
The parameterization method for invariant manifolds. III. Overview and applications
-
Cabré X, Fontich E, de la Llave R: The parameterization method for invariant manifolds. III. Overview and applications. J Differ Equ 2005, 218(2):444-515.
-
(2005)
J Differ Equ
, vol.218
, Issue.2
, pp. 444-515
-
-
Cabré, X.1
Fontich, E.2
de la Llave, R.3
-
22
-
-
33646864549
-
Fixed points of two-dimensional maps obtained under rapid stimulations
-
doi:10.1016/j.physleta.2006.02.059
-
Rabinovitch A, Friedman M: Fixed points of two-dimensional maps obtained under rapid stimulations. Phys Lett A 2006, 355(4-5):319-325. doi:10.1016/j.physleta.2006.02.059.
-
(2006)
Phys Lett A
, vol.355
, Issue.4-5
, pp. 319-325
-
-
Rabinovitch, A.1
Friedman, M.2
-
23
-
-
77951911748
-
Higher order approximation of isochrons
-
doi:10.1088/0951-7715/23/6/004
-
Takeshita D, Feres R: Higher order approximation of isochrons. Nonlinearity 2010, 23(6):1303-1323. doi:10.1088/0951-7715/23/6/004.
-
(2010)
Nonlinearity
, vol.23
, Issue.6
, pp. 1303-1323
-
-
Takeshita, D.1
Feres, R.2
-
24
-
-
77954872218
-
Quadratic approximations for the isochrons of oscillators: A general theory, advanced numerical methods and accurate phase computations
-
Suvak O, Demir A: Quadratic approximations for the isochrons of oscillators: a general theory, advanced numerical methods and accurate phase computations. IEEE Trans Comput-Aided Des Integr Circuits Syst 2010, 29:1215-1228.
-
(2010)
IEEE Trans Comput-Aided Des Integr Circuits Syst
, vol.29
, pp. 1215-1228
-
-
Suvak, O.1
Demir, A.2
|