메뉴 건너뛰기




Volumn 9, Issue 10, 2013, Pages

Rad52 Sumoylation Prevents the Toxicity of Unproductive Rad51 Filaments Independently of the Anti-Recombinase Srs2

Author keywords

[No Author keywords available]

Indexed keywords

FUNGAL DNA; FUNGAL PROTEIN; HYBRID PROTEIN; LEUCINE; LIGASE; PROLINE; PROTEIN SRS2; RAD51 NUCLEOPROTEIN FILAMENT; RAD51 PROTEIN; RAD52 PROTEIN; RECOMBINASE; SUMOLIGASE SIZ2; UNCLASSIFIED DRUG;

EID: 84887298976     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1003833     Document Type: Article
Times cited : (18)

References (80)
  • 2
    • 0038799991 scopus 로고    scopus 로고
    • Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae
    • Pâques F, Haber JE, (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63: 349-404.
    • (1999) Microbiol Mol Biol Rev , vol.63 , pp. 349-404
    • Pâques, F.1    Haber, J.E.2
  • 3
    • 10344263324 scopus 로고    scopus 로고
    • Recombination proteins in yeast
    • Krogh BO, Symington LS, (2004) Recombination proteins in yeast. Annu Rev Genet 38: 233-271.
    • (2004) Annu Rev Genet , vol.38 , pp. 233-271
    • Krogh, B.O.1    Symington, L.S.2
  • 4
    • 50649100744 scopus 로고    scopus 로고
    • Mechanism of eukaryotic homologous recombination
    • San Filippo J, Sung P, Klein H, (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77: 229-257.
    • (2008) Annu Rev Biochem , vol.77 , pp. 229-257
    • San Filippo, J.1    Sung, P.2    Klein, H.3
  • 6
    • 0026530911 scopus 로고
    • Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation
    • Sugawara N, Haber JE, (1992) Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol Cell Biol 12: 563-575.
    • (1992) Mol Cell Biol , vol.12 , pp. 563-575
    • Sugawara, N.1    Haber, J.E.2
  • 7
  • 8
    • 39549102855 scopus 로고    scopus 로고
    • Rad52 promotes postinvasion steps of meiotic double-strand-break repair
    • Lao JP, Oh SD, Shinohara M, Shinohara A, Hunter N, (2008) Rad52 promotes postinvasion steps of meiotic double-strand-break repair. Mol Cell 29: 517-524.
    • (2008) Mol Cell , vol.29 , pp. 517-524
    • Lao, J.P.1    Oh, S.D.2    Shinohara, M.3    Shinohara, A.4    Hunter, N.5
  • 9
    • 70450227269 scopus 로고    scopus 로고
    • Role of the Rad52 amino-terminal DNA binding activity in DNA strand capture in homologous recombination
    • Shi I, Hallwyl SC, Seong C, Mortensen U, Rothstein R, et al. (2009) Role of the Rad52 amino-terminal DNA binding activity in DNA strand capture in homologous recombination. J Biol Chem 284: 33275-33284.
    • (2009) J Biol Chem , vol.284 , pp. 33275-33284
    • Shi, I.1    Hallwyl, S.C.2    Seong, C.3    Mortensen, U.4    Rothstein, R.5
  • 10
  • 11
    • 33750499289 scopus 로고    scopus 로고
    • Control of Rad52 recombination activity by double-strand break-induced SUMO modification
    • Sacher M, Pfander B, Hoege C, Jentsch S, (2006) Control of Rad52 recombination activity by double-strand break-induced SUMO modification. Nat Cell Biol 8: 1284-1290.
    • (2006) Nat Cell Biol , vol.8 , pp. 1284-1290
    • Sacher, M.1    Pfander, B.2    Hoege, C.3    Jentsch, S.4
  • 13
    • 43849092514 scopus 로고    scopus 로고
    • Rad52 sumoylation and its involvement in the efficient induction of homologous recombination
    • Ohuchi T, Seki M, Branzei D, Maeda D, Ui A, et al. (2008) Rad52 sumoylation and its involvement in the efficient induction of homologous recombination. DNA Repair (Amst) 7: 879-889.
    • (2008) DNA Repair (Amst) , vol.7 , pp. 879-889
    • Ohuchi, T.1    Seki, M.2    Branzei, D.3    Maeda, D.4    Ui, A.5
  • 14
    • 34547591933 scopus 로고    scopus 로고
    • The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus
    • Torres-Rosell J, Sunjevaric I, De Piccoli G, Sacher M, Eckert-Boulet N, et al. (2007) The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat Cell Biol 9: 923-931.
    • (2007) Nat Cell Biol , vol.9 , pp. 923-931
    • Torres-Rosell, J.1    Sunjevaric, I.2    De Piccoli, G.3    Sacher, M.4    Eckert-Boulet, N.5
  • 15
    • 84869091913 scopus 로고    scopus 로고
    • Protein Group Modification and Synergy in the SUMO Pathway as Exemplified in DNA Repair
    • Psakhye I, Jentsch S, (2012) Protein Group Modification and Synergy in the SUMO Pathway as Exemplified in DNA Repair. Cell 151: 807-820.
    • (2012) Cell , vol.151 , pp. 807-820
    • Psakhye, I.1    Jentsch, S.2
  • 16
    • 84877585813 scopus 로고    scopus 로고
    • Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51-Rad52 interaction
    • Bergink S, Ammon T, Kern M, Schermelleh L, Leonhardt H, et al. (2013) Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51-Rad52 interaction. Nat Cell Biol 15: 526-532.
    • (2013) Nat Cell Biol , vol.15 , pp. 526-532
    • Bergink, S.1    Ammon, T.2    Kern, M.3    Schermelleh, L.4    Leonhardt, H.5
  • 17
    • 33748681302 scopus 로고    scopus 로고
    • Some disassembly required: role of DNA translocases in the disruption of recombination intermediates and dead-end complexes
    • Symington LS, Heyer WD, (2006) Some disassembly required: role of DNA translocases in the disruption of recombination intermediates and dead-end complexes. Genes Dev 20: 2479-2486.
    • (2006) Genes Dev , vol.20 , pp. 2479-2486
    • Symington, L.S.1    Heyer, W.D.2
  • 18
    • 0026751086 scopus 로고
    • Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins
    • Aboussekhra A, Chanet R, Adjiri A, Fabre F, (1992) Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Mol Cell Biol 12: 3224-3234.
    • (1992) Mol Cell Biol , vol.12 , pp. 3224-3234
    • Aboussekhra, A.1    Chanet, R.2    Adjiri, A.3    Fabre, F.4
  • 19
    • 0029772319 scopus 로고    scopus 로고
    • Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase
    • Chanet R, Heude M, Adjiri A, Maloisel L, Fabre F, (1996) Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase. Mol Cell Biol 16: 4782-4789.
    • (1996) Mol Cell Biol , vol.16 , pp. 4782-4789
    • Chanet, R.1    Heude, M.2    Adjiri, A.3    Maloisel, L.4    Fabre, F.5
  • 20
    • 0028948126 scopus 로고
    • Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51
    • Milne GT, Ho T, Weaver DT, (1995) Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51. Genetics 139: 1189-1199.
    • (1995) Genetics , vol.139 , pp. 1189-1199
    • Milne, G.T.1    Ho, T.2    Weaver, D.T.3
  • 21
    • 0034119866 scopus 로고    scopus 로고
    • Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases
    • Gangloff S, Soustelle C, Fabre F, (2000) Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat Genet 25: 192-194.
    • (2000) Nat Genet , vol.25 , pp. 192-194
    • Gangloff, S.1    Soustelle, C.2    Fabre, F.3
  • 22
    • 0026669523 scopus 로고
    • Analysis of mitotic and meiotic defects in Saccharomyces cerevisiae SRS2 DNA helicase mutants
    • Palladino F, Klein HL, (1992) Analysis of mitotic and meiotic defects in Saccharomyces cerevisiae SRS2 DNA helicase mutants. Genetics 132: 23-37.
    • (1992) Genetics , vol.132 , pp. 23-37
    • Palladino, F.1    Klein, H.L.2
  • 23
    • 3543031002 scopus 로고    scopus 로고
    • Mrc1 is required for sister chromatid cohesion to aid in recombination repair of spontaneous damage
    • Xu H, Boone C, Klein HL, (2004) Mrc1 is required for sister chromatid cohesion to aid in recombination repair of spontaneous damage. Mol Cell Biol 24: 7082-7090.
    • (2004) Mol Cell Biol , vol.24 , pp. 7082-7090
    • Xu, H.1    Boone, C.2    Klein, H.L.3
  • 24
    • 0037673943 scopus 로고    scopus 로고
    • The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments
    • Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, et al. (2003) The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423: 309-312.
    • (2003) Nature , vol.423 , pp. 309-312
    • Veaute, X.1    Jeusset, J.2    Soustelle, C.3    Kowalczykowski, S.C.4    Le Cam, E.5
  • 25
    • 0037673941 scopus 로고    scopus 로고
    • DNA helicase Srs2 disrupts the Rad51 presynaptic filament
    • Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS, et al. (2003) DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423: 305-309.
    • (2003) Nature , vol.423 , pp. 305-309
    • Krejci, L.1    Van Komen, S.2    Li, Y.3    Villemain, J.4    Reddy, M.S.5
  • 26
    • 67449116595 scopus 로고    scopus 로고
    • Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo
    • Burgess RC, Lisby M, Altmannova V, Krejci L, Sung P, et al. (2009) Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo. J Cell Biol 185: 969-981.
    • (2009) J Cell Biol , vol.185 , pp. 969-981
    • Burgess, R.C.1    Lisby, M.2    Altmannova, V.3    Krejci, L.4    Sung, P.5
  • 27
    • 0035108094 scopus 로고    scopus 로고
    • Mutations in recombinational repair and in checkpoint control genes suppress the lethal combination of srs2Δ with other DNA repair genes in Saccharomyces cerevisiae
    • Klein HL, (2001) Mutations in recombinational repair and in checkpoint control genes suppress the lethal combination of srs2Δ with other DNA repair genes in Saccharomyces cerevisiae. Genetics 157: 557-565.
    • (2001) Genetics , vol.157 , pp. 557-565
    • Klein, H.L.1
  • 28
    • 0036671706 scopus 로고    scopus 로고
    • Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase
    • Vaze MB, Pellicioli A, Lee SE, Ira G, Liberi G, et al. (2002) Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol Cell 10: 373-385.
    • (2002) Mol Cell , vol.10 , pp. 373-385
    • Vaze, M.B.1    Pellicioli, A.2    Lee, S.E.3    Ira, G.4    Liberi, G.5
  • 29
    • 0345447604 scopus 로고    scopus 로고
    • Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast
    • Ira G, Malkova A, Liberi G, Foiani M, Haber JE, (2003) Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115: 401-411.
    • (2003) Cell , vol.115 , pp. 401-411
    • Ira, G.1    Malkova, A.2    Liberi, G.3    Foiani, M.4    Haber, J.E.5
  • 30
    • 33745541640 scopus 로고    scopus 로고
    • Mrc1 and Srs2 are major actors in the regulation of spontaneous crossover
    • Robert T, Dervins D, Fabre F, Gangloff S, (2006) Mrc1 and Srs2 are major actors in the regulation of spontaneous crossover. EMBO J 25: 2837-2846.
    • (2006) EMBO J , vol.25 , pp. 2837-2846
    • Robert, T.1    Dervins, D.2    Fabre, F.3    Gangloff, S.4
  • 31
    • 38649130654 scopus 로고    scopus 로고
    • The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during mitotic recombination
    • Dupaigne P, Le Breton C, Fabre F, Gangloff S, Le Cam E, et al. (2008) The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during mitotic recombination. Mol Cell 29: 243-254.
    • (2008) Mol Cell , vol.29 , pp. 243-254
    • Dupaigne, P.1    Le Breton, C.2    Fabre, F.3    Gangloff, S.4    Le Cam, E.5
  • 32
    • 84875974599 scopus 로고    scopus 로고
    • Heteroduplex DNA position defines the roles of the Sgs1, Srs2, and Mph1 helicases in promoting distinct recombination outcomes
    • Mitchel K, Lehner K, Jinks-Robertson S, (2013) Heteroduplex DNA position defines the roles of the Sgs1, Srs2, and Mph1 helicases in promoting distinct recombination outcomes. PLoS Genet 9: e1003340.
    • (2013) PLoS Genet , vol.9
    • Mitchel, K.1    Lehner, K.2    Jinks-Robertson, S.3
  • 33
    • 0024445751 scopus 로고
    • RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene
    • Aboussekhra A, Chanet R, Zgaga Z, Cassier-Chauvat C, Heude M, et al. (1989) RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene. Nucleic Acids Res 17: 7211-7219.
    • (1989) Nucleic Acids Res , vol.17 , pp. 7211-7219
    • Aboussekhra, A.1    Chanet, R.2    Zgaga, Z.3    Cassier-Chauvat, C.4    Heude, M.5
  • 34
    • 0035989355 scopus 로고    scopus 로고
    • A molecular genetic dissection of the evolutionarily conserved N terminus of yeast Rad52
    • Mortensen UH, Erdeniz N, Feng Q, Rothstein R, (2002) A molecular genetic dissection of the evolutionarily conserved N terminus of yeast Rad52. Genetics 161: 549-562.
    • (2002) Genetics , vol.161 , pp. 549-562
    • Mortensen, U.H.1    Erdeniz, N.2    Feng, Q.3    Rothstein, R.4
  • 35
    • 0031902872 scopus 로고    scopus 로고
    • Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing
    • Shinohara A, Shinohara M, Ohta T, Matsuda S, Ogawa T, (1998) Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells 3: 145-156.
    • (1998) Genes Cells , vol.3 , pp. 145-156
    • Shinohara, A.1    Shinohara, M.2    Ohta, T.3    Matsuda, S.4    Ogawa, T.5
  • 36
    • 57649143095 scopus 로고    scopus 로고
    • Interaction with RPA is necessary for Rad52 repair center formation and for its mediator activity
    • Plate I, Hallwyl SC, Shi I, Krejci L, Muller C, et al. (2008) Interaction with RPA is necessary for Rad52 repair center formation and for its mediator activity. J Biol Chem 283: 29077-29085.
    • (2008) J Biol Chem , vol.283 , pp. 29077-29085
    • Plate, I.1    Hallwyl, S.C.2    Shi, I.3    Krejci, L.4    Muller, C.5
  • 37
    • 0026089250 scopus 로고
    • The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene
    • Rong L, Palladino F, Aguilera A, Klein HL, (1991) The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene. Genetics 127: 75-85.
    • (1991) Genetics , vol.127 , pp. 75-85
    • Rong, L.1    Palladino, F.2    Aguilera, A.3    Klein, H.L.4
  • 38
    • 0028946208 scopus 로고
    • Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity
    • Schild D, (1995) Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics 140: 115-127.
    • (1995) Genetics , vol.140 , pp. 115-127
    • Schild, D.1
  • 39
    • 33845335815 scopus 로고    scopus 로고
    • Suppression of spontaneous genome rearrangements in yeast DNA helicase mutants
    • Schmidt KH, Kolodner RD, (2006) Suppression of spontaneous genome rearrangements in yeast DNA helicase mutants. Proc Natl Acad Sci U S A 103: 18196-18201.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 18196-18201
    • Schmidt, K.H.1    Kolodner, R.D.2
  • 40
    • 0037168658 scopus 로고    scopus 로고
    • Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication
    • Fabre F, Chan A, Heyer WD, Gangloff S, (2002) Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc Natl Acad Sci U S A 99: 16887-16892.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 16887-16892
    • Fabre, F.1    Chan, A.2    Heyer, W.D.3    Gangloff, S.4
  • 41
    • 82555165921 scopus 로고    scopus 로고
    • Srs2 enables checkpoint recovery by promoting disassembly of DNA damage foci from chromatin
    • Yeung M, Durocher D, (2011) Srs2 enables checkpoint recovery by promoting disassembly of DNA damage foci from chromatin. DNA Repair (Amst) 10: 1213-1222.
    • (2011) DNA Repair (Amst) , vol.10 , pp. 1213-1222
    • Yeung, M.1    Durocher, D.2
  • 42
    • 0032568595 scopus 로고    scopus 로고
    • DNA annealing by Rad52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA
    • Sugiyama T, New JH, Kowalczykowski SC, (1998) DNA annealing by Rad52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc Natl Acad Sci U S A 95: 6049-6054.
    • (1998) Proc Natl Acad Sci U S A , vol.95 , pp. 6049-6054
    • Sugiyama, T.1    New, J.H.2    Kowalczykowski, S.C.3
  • 43
    • 0034717199 scopus 로고    scopus 로고
    • Functional interactions among yeast Rad51 recombinase, Rad52 mediator, and replication protein A in DNA strand exchange
    • Song B, Sung P, (2000) Functional interactions among yeast Rad51 recombinase, Rad52 mediator, and replication protein A in DNA strand exchange. J Biol Chem 275: 15895-15904.
    • (2000) J Biol Chem , vol.275 , pp. 15895-15904
    • Song, B.1    Sung, P.2
  • 44
    • 0034759324 scopus 로고    scopus 로고
    • The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing
    • Davis AP, Symington LS, (2001) The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing. Genetics 159: 515-525.
    • (2001) Genetics , vol.159 , pp. 515-525
    • Davis, A.P.1    Symington, L.S.2
  • 45
    • 5144231116 scopus 로고    scopus 로고
    • A novel yeast mutation, rad52-L89F, causes a specific defect in Rad51-independent recombination that correlates with a reduced ability of Rad52-L89F to interact with Rad59
    • Cortes-Ledesma F, Malagon F, Aguilera A, (2004) A novel yeast mutation, rad52-L89F, causes a specific defect in Rad51-independent recombination that correlates with a reduced ability of Rad52-L89F to interact with Rad59. Genetics 168: 553-557.
    • (2004) Genetics , vol.168 , pp. 553-557
    • Cortes-Ledesma, F.1    Malagon, F.2    Aguilera, A.3
  • 46
    • 3943099375 scopus 로고    scopus 로고
    • Protein modification by SUMO
    • Johnson ES, (2004) Protein modification by SUMO. Annu Rev Biochem 73: 355-382.
    • (2004) Annu Rev Biochem , vol.73 , pp. 355-382
    • Johnson, E.S.1
  • 47
    • 33751369521 scopus 로고    scopus 로고
    • The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae
    • Lettier G, Feng Q, de Mayolo AA, Erdeniz N, Reid RJ, et al. (2006) The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae. PLoS Genet 2: e194.
    • (2006) PLoS Genet , vol.2
    • Lettier, G.1    Feng, Q.2    de Mayolo, A.A.3    Erdeniz, N.4    Reid, R.J.5
  • 48
    • 0032712707 scopus 로고    scopus 로고
    • A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59
    • Bai Y, Davis AP, Symington LS, (1999) A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59. Genetics 153: 1117-1130.
    • (1999) Genetics , vol.153 , pp. 1117-1130
    • Bai, Y.1    Davis, A.P.2    Symington, L.S.3
  • 49
    • 0027400131 scopus 로고
    • A Saccharomyces cerevisiae RAD52 allele expressing a C-terminal truncation protein: activities and intragenic complementation of missense mutations
    • Boundy-Mills KL, Livingston DM, (1993) A Saccharomyces cerevisiae RAD52 allele expressing a C-terminal truncation protein: activities and intragenic complementation of missense mutations. Genetics 133: 39-49.
    • (1993) Genetics , vol.133 , pp. 39-49
    • Boundy-Mills, K.L.1    Livingston, D.M.2
  • 50
    • 0037131404 scopus 로고    scopus 로고
    • Interaction with Rad51 is indispensable for recombination mediator function of Rad52
    • Krejci L, Song B, Bussen W, Rothstein R, Mortensen UH, et al. (2002) Interaction with Rad51 is indispensable for recombination mediator function of Rad52. J Biol Chem 277: 40132-40141.
    • (2002) J Biol Chem , vol.277 , pp. 40132-40141
    • Krejci, L.1    Song, B.2    Bussen, W.3    Rothstein, R.4    Mortensen, U.H.5
  • 51
    • 72949096778 scopus 로고    scopus 로고
    • The rad52-Y66A allele alters the choice of donor template during spontaneous chromosomal recombination
    • de Mayolo AA, Sunjevaric I, Reid R, Mortensen UH, Rothstein R, et al. (2010) The rad52-Y66A allele alters the choice of donor template during spontaneous chromosomal recombination. DNA Repair (Amst) 9: 23-32.
    • (2010) DNA Repair (Amst) , vol.9 , pp. 23-32
    • de Mayolo, A.A.1    Sunjevaric, I.2    Reid, R.3    Mortensen, U.H.4    Rothstein, R.5
  • 52
    • 77649222970 scopus 로고    scopus 로고
    • Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair
    • Saponaro M, Callahan D, Zheng X, Krejci L, Haber JE, et al. (2010) Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair. PLoS Genet 6: e1000858.
    • (2010) PLoS Genet , vol.6
    • Saponaro, M.1    Callahan, D.2    Zheng, X.3    Krejci, L.4    Haber, J.E.5
  • 53
    • 0032493889 scopus 로고    scopus 로고
    • Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage
    • Lee SE, Moore JK, Holmes A, Umezu K, Kolodner RD, et al. (1998) Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94: 399-409.
    • (1998) Cell , vol.94 , pp. 399-409
    • Lee, S.E.1    Moore, J.K.2    Holmes, A.3    Umezu, K.4    Kolodner, R.D.5
  • 54
    • 0042865938 scopus 로고    scopus 로고
    • S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex
    • Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H, et al. (2003) S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424: 1078-1083.
    • (2003) Nature , vol.424 , pp. 1078-1083
    • Katou, Y.1    Kanoh, Y.2    Bando, M.3    Noguchi, H.4    Tanaka, H.5
  • 55
    • 0036900120 scopus 로고    scopus 로고
    • Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair
    • Symington LS, (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66: 630-70.
    • (2002) Microbiol Mol Biol Rev , vol.66 , pp. 630-670
    • Symington, L.S.1
  • 56
    • 59649102253 scopus 로고    scopus 로고
    • Rad54 controls access to the invading 3′-OH end after Rad51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae
    • Li X, Heyer WD, (2009) Rad54 controls access to the invading 3′-OH end after Rad51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae. Nucleic Acids Res 37: 638-646.
    • (2009) Nucleic Acids Res , vol.37 , pp. 638-646
    • Li, X.1    Heyer, W.D.2
  • 57
    • 54049139260 scopus 로고    scopus 로고
    • Rad51 protein stimulates the branch migration activity of Rad54 protein
    • Rossi MJ, Mazin AV, (2008) Rad51 protein stimulates the branch migration activity of Rad54 protein. J Biol Chem 283: 24698-24706.
    • (2008) J Biol Chem , vol.283 , pp. 24698-24706
    • Rossi, M.J.1    Mazin, A.V.2
  • 58
    • 44949091416 scopus 로고    scopus 로고
    • A Rad51 presynaptic filament is sufficient to capture nucleosomal homology during recombinational repair of a DNA double-strand break
    • Sinha M, Peterson CL, (2008) A Rad51 presynaptic filament is sufficient to capture nucleosomal homology during recombinational repair of a DNA double-strand break. Mol Cell 30: 803-810.
    • (2008) Mol Cell , vol.30 , pp. 803-810
    • Sinha, M.1    Peterson, C.L.2
  • 59
    • 77950900571 scopus 로고    scopus 로고
    • The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorous DNA helicase that preferentially unwinds holliday junctions
    • Cejka P, Kowalczykowski SC, (2010) The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorous DNA helicase that preferentially unwinds holliday junctions. J Biol Chem 285: 8290-8301.
    • (2010) J Biol Chem , vol.285 , pp. 8290-8301
    • Cejka, P.1    Kowalczykowski, S.C.2
  • 60
    • 79953196154 scopus 로고    scopus 로고
    • Holliday junction-containing DNA structures persist in cells lacking Sgs1 or Top3 following exposure to DNA damage
    • Mankouri HW, Ashton TM, Hickson ID, (2011) Holliday junction-containing DNA structures persist in cells lacking Sgs1 or Top3 following exposure to DNA damage. Proc Natl Acad Sci U S A 108: 4944-4949.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 4944-4949
    • Mankouri, H.W.1    Ashton, T.M.2    Hickson, I.D.3
  • 61
    • 84855901029 scopus 로고    scopus 로고
    • Inhibition of Homologous Recombination by the PCNA-Interacting Protein PARI
    • Moldovan GL, Dejsuphong D, Petalcorin MI, Hofmann K, Takeda S, et al. (2011) Inhibition of Homologous Recombination by the PCNA-Interacting Protein PARI. Mol Cell 45: 75-86.
    • (2011) Mol Cell , vol.45 , pp. 75-86
    • Moldovan, G.L.1    Dejsuphong, D.2    Petalcorin, M.I.3    Hofmann, K.4    Takeda, S.5
  • 63
    • 59249091313 scopus 로고    scopus 로고
    • In vivo detection and characterization of sumoylation targets in Saccharomyces cerevisiae
    • Ulrich HD, Davies AA, (2009) In vivo detection and characterization of sumoylation targets in Saccharomyces cerevisiae. Methods Mol Biol 497: 81-103.
    • (2009) Methods Mol Biol , vol.497 , pp. 81-103
    • Ulrich, H.D.1    Davies, A.A.2
  • 64
    • 0032873415 scopus 로고    scopus 로고
    • Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae
    • Goldstein AL, McCusker JH, (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15: 1541-1553.
    • (1999) Yeast , vol.15 , pp. 1541-1553
    • Goldstein, A.L.1    McCusker, J.H.2
  • 65
    • 0020529962 scopus 로고
    • Transformation of intact yeast cells treated with alkali cations
    • Ito H, Fukuda Y, Murata K, Kimura A, (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153: 163-168.
    • (1983) J Bacteriol , vol.153 , pp. 163-168
    • Ito, H.1    Fukuda, Y.2    Murata, K.3    Kimura, A.4
  • 66
    • 0031820288 scopus 로고    scopus 로고
    • Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
    • Longtine MS, McKenzie Ar, Demarini DJ, Shah NG, Wach A, et al. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14: 953-961.
    • (1998) Yeast , vol.14 , pp. 953-961
    • Longtine, M.S.1    McKenzie, A.2    Demarini, D.J.3    Shah, N.G.4    Wach, A.5
  • 67
    • 0034603727 scopus 로고    scopus 로고
    • A novel multi-purpose cassette for repeated integrative epitope tagging of genes in Saccharomyces cerevisiae
    • De Antoni A, Gallwitz D, (2000) A novel multi-purpose cassette for repeated integrative epitope tagging of genes in Saccharomyces cerevisiae. Gene 246: 179-185.
    • (2000) Gene , vol.246 , pp. 179-185
    • De Antoni, A.1    Gallwitz, D.2
  • 68
    • 0030801002 scopus 로고    scopus 로고
    • Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402.
    • (1997) Nucleic Acids Res , vol.25 , pp. 3389-3402
    • Altschul, S.F.1    Madden, T.L.2    Schaffer, A.A.3    Zhang, J.4    Zhang, Z.5
  • 69
    • 0035878724 scopus 로고    scopus 로고
    • Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements
    • Schaffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, et al. (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29: 2994-3005.
    • (2001) Nucleic Acids Res , vol.29 , pp. 2994-3005
    • Schaffer, A.A.1    Aravind, L.2    Madden, T.L.3    Shavirin, S.4    Spouge, J.L.5
  • 70
    • 3042666256 scopus 로고    scopus 로고
    • MUSCLE: multiple sequence alignment with high accuracy and high throughput
    • Edgar RC, (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792-1797.
    • (2004) Nucleic Acids Res , vol.32 , pp. 1792-1797
    • Edgar, R.C.1
  • 71
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • Jones DT, (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292: 195-202.
    • (1999) J Mol Biol , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 73
    • 33745211644 scopus 로고    scopus 로고
    • Methods for determining spontaneous mutation rates
    • Foster PL, (2006) Methods for determining spontaneous mutation rates. Methods Enzymol 409: 195-213.
    • (2006) Methods Enzymol , vol.409 , pp. 195-213
    • Foster, P.L.1
  • 74
    • 33745208227 scopus 로고    scopus 로고
    • Repair of DNA double strand breaks: in vivo biochemistry
    • Sugawara N, Haber JE, (2006) Repair of DNA double strand breaks: in vivo biochemistry. Methods Enzymol 408: 416-429.
    • (2006) Methods Enzymol , vol.408 , pp. 416-429
    • Sugawara, N.1    Haber, J.E.2
  • 75
    • 0031027431 scopus 로고    scopus 로고
    • Sir2 and Sir4 interactions differ in core and extended telomeric heterochromatin in yeast
    • Strahl-Bolsinger S, Hecht A, Luo K, Grunstein M, (1997) Sir2 and Sir4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev 11: 83-93.
    • (1997) Genes Dev , vol.11 , pp. 83-93
    • Strahl-Bolsinger, S.1    Hecht, A.2    Luo, K.3    Grunstein, M.4
  • 76
    • 0037931365 scopus 로고    scopus 로고
    • The recombination-deficient mutant RPA (rfa1-t11) is displaced slowly from single-stranded DNA by Rad51 protein
    • Kantake N, Sugiyama T, Kolodner RD, Kowalczykowski SC, (2003) The recombination-deficient mutant RPA (rfa1-t11) is displaced slowly from single-stranded DNA by Rad51 protein. J Biol Chem 278: 23410-23417.
    • (2003) J Biol Chem , vol.278 , pp. 23410-23417
    • Kantake, N.1    Sugiyama, T.2    Kolodner, R.D.3    Kowalczykowski, S.C.4
  • 77
    • 0033614034 scopus 로고    scopus 로고
    • The DNA binding properties of Saccharomyces cerevisiae Rad51 protein
    • Zaitseva EM, Zaitsev EN, Kowalczykowski SC, (1999) The DNA binding properties of Saccharomyces cerevisiae Rad51 protein. J Biol Chem 274: 2907-2915.
    • (1999) J Biol Chem , vol.274 , pp. 2907-2915
    • Zaitseva, E.M.1    Zaitsev, E.N.2    Kowalczykowski, S.C.3
  • 78
    • 0032556870 scopus 로고    scopus 로고
    • Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A
    • New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC, (1998) Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391: 407-410.
    • (1998) Nature , vol.391 , pp. 407-410
    • New, J.H.1    Sugiyama, T.2    Zaitseva, E.3    Kowalczykowski, S.C.4
  • 80
    • 0030666945 scopus 로고    scopus 로고
    • Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase
    • Sung P, (1997) Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J Biol Chem 272: 28194-28197.
    • (1997) J Biol Chem , vol.272 , pp. 28194-28197
    • Sung, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.