-
1
-
-
70350674327
-
Piezoelectric MEMS sensors: State-of- The-art and perspectives
-
Tadigadapa, S. & Mateti, K. Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas. Sci. Technol. 20, 092001 (2009).
-
(2009)
Meas. Sci. Technol.
, vol.20
, pp. 092001
-
-
Tadigadapa, S.1
Mateti, K.2
-
2
-
-
84863116422
-
Piezoelectric nanogenerators - Harvesting ambient mechanical energy at the nanometer scale
-
Wang, X. Piezoelectric nanogenerators - harvesting ambient mechanical energy at the nanometer scale. Nano Energy 1, 13-24 (2012).
-
(2012)
Nano Energy
, vol.1
, pp. 13-24
-
-
Wang, X.1
-
3
-
-
84865581193
-
A review of mechanical and electromechanical properties of piezoelectric nanowires
-
Espinosa, H. D., Bernal, R. A. & Minary-Jolandan, M. A review of mechanical and electromechanical properties of piezoelectric nanowires. Adv. Mater. 24, 4656-4675 (2012).
-
(2012)
Adv. Mater.
, vol.24
, pp. 4656-4675
-
-
Espinosa, H.D.1
Bernal, R.A.2
Minary-Jolandan, M.3
-
4
-
-
79751507972
-
Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires
-
Yan, Z. & Jiang, L. Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires. J. Phys. D Appl. Phys. 44, 075404 (2011).
-
(2011)
J. Phys. D Appl. Phys.
, vol.44
, pp. 075404
-
-
Yan, Z.1
Jiang, L.2
-
5
-
-
78049352004
-
Sound-driven piezoelectric nanowire-based nanogenerators
-
Cha, S. N. et al. Sound-driven piezoelectric nanowire-based nanogenerators. Adv. Mater. 22, 4726-4730 (2010).
-
(2010)
Adv. Mater.
, vol.22
, pp. 4726-4730
-
-
Cha, S.N.1
-
6
-
-
34147113273
-
Direct-current nanogenerator driven by ultrasonic waves
-
DOI 10.1126/science.1139366
-
Wang, X., Song, J., Liu, J. & Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102-105 (2007). (Pubitemid 46559527)
-
(2007)
Science
, vol.316
, Issue.5821
, pp. 102-105
-
-
Wang, X.1
Song, J.2
Liu, J.3
Zhong, L.W.4
-
7
-
-
43049105732
-
Toward high output-power nanogenerator
-
Liu, J., Fei, P., Zhou, J., Tummala, R. & Wang, Z. L. Toward high output-power nanogenerator. Appl. Phys. Lett. 92, 173105 (2008).
-
(2008)
Appl. Phys. Lett.
, vol.92
, pp. 173105
-
-
Liu, J.1
Fei, P.2
Zhou, J.3
Tummala, R.4
Wang, Z.L.5
-
8
-
-
34548190627
-
Integrated nanogenerators in biofluid
-
DOI 10.1021/nl0712567
-
Wang, L. i. u., Song, J. & Wang, Z. L. Integrated nanogenerators in biofluid. Nano Lett. 7, 2475-2479 (2007). (Pubitemid 47310148)
-
(2007)
Nano Letters
, vol.7
, Issue.8
, pp. 2475-2479
-
-
Wang, X.1
Liu, J.2
Song, J.3
Wang, Z.L.4
-
9
-
-
67649289520
-
Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods
-
Choi, M. et al. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv. Mater. 21, 2185-2189 (2009).
-
(2009)
Adv. Mater.
, vol.21
, pp. 2185-2189
-
-
Choi, M.1
-
10
-
-
77953310763
-
1.6V nanogenerator for mechanical energy harvesting using PZT nanofibers
-
Chen, X., Xu, S., Yao, N. & Shi, Y. 1.6V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133-2137 (2010).
-
(2010)
Nano Lett.
, vol.10
, pp. 2133-2137
-
-
Chen, X.1
Xu, S.2
Yao, N.3
Shi, Y.4
-
11
-
-
33645810366
-
Piezoelectric nanogenerators based on zinc oxide nanowire arrays
-
Wang, Z. L. & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242-246 (2006).
-
(2006)
Science
, vol.312
, pp. 242-246
-
-
Wang, Z.L.1
Song, J.2
-
12
-
-
33846455436
-
Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices
-
DOI 10.1002/adma.200601162
-
Gao, P. X., Song, J., Liu, J. & Wang, Z. L. Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Adv. Mater. 19, 67-72 (2007). (Pubitemid 46144811)
-
(2007)
Advanced Materials
, vol.19
, Issue.1
, pp. 67-72
-
-
Gao, P.X.1
Song, J.2
Liu, J.3
Wang, Z.L.4
-
13
-
-
65249165597
-
Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator
-
Yang, R., Qin, Y., Li, C., Zhu, G. & Wang, Z. L. Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9, 1201-1205 (2009).
-
(2009)
Nano Lett.
, vol.9
, pp. 1201-1205
-
-
Yang, R.1
Qin, Y.2
Li, C.3
Zhu, G.4
Wang, Z.L.5
-
14
-
-
77955548078
-
Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy
-
Hansen, B. J., Liu, Y., Yang, R. & Wang, Z. L. Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4, 3647-3652 (2010).
-
(2010)
ACS Nano
, vol.4
, pp. 3647-3652
-
-
Hansen, B.J.1
Liu, Y.2
Yang, R.3
Wang, Z.L.4
-
15
-
-
77955873049
-
Fundamental study of mechanical energy harvesting using piezoelectric nanostructures
-
Sun, C., Shi, J. & Wang, X. Fundamental study of mechanical energy harvesting using piezoelectric nanostructures. J. Appl. Phys. 108, 034309 (2010).
-
(2010)
J. Appl. Phys.
, vol.108
, pp. 034309
-
-
Sun, C.1
Shi, J.2
Wang, X.3
-
16
-
-
84860458350
-
Nanogenerator as self-powered vibration sensor
-
Yu, A., Jiang, P. & Lin Wang, Z. Nanogenerator as self-powered vibration sensor. Nano Energy 1, 418-423 (2012).
-
(2012)
Nano Energy
, vol.1
, pp. 418-423
-
-
Yu, A.1
Jiang, P.2
Lin Wang, Z.3
-
18
-
-
33846358960
-
Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire
-
DOI 10.1021/nl061802g
-
Wang, X. et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6, 2768-2772 (2006). (Pubitemid 46129569)
-
(2006)
Nano Letters
, vol.6
, Issue.12
, pp. 2768-2772
-
-
Wang, X.1
Zhou, J.2
Song, J.3
Liu, J.4
Xu, N.5
Wang, Z.L.6
-
19
-
-
84880317348
-
Piezoelectric-nanowire-enabled power source for driving wireless microelectronics
-
Xu, S., Hansen, B. J. & Wang, Z. L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun. 1, 93 (2010).
-
(2010)
Nat. Commun.
, vol.1
, pp. 93
-
-
Xu, S.1
Hansen, B.J.2
Wang, Z.L.3
-
20
-
-
84860440818
-
Electricity generation based on vertically aligned PbZr0.2Ti0.8O3 nanowire arrays
-
Chen, C. et al. Electricity generation based on vertically aligned PbZr0.2Ti0.8O3 nanowire arrays. Nano Energy 1, 424-428 (2012).
-
(2012)
Nano Energy
, vol.1
, pp. 424-428
-
-
Chen, C.1
-
21
-
-
70349659672
-
Hydrothermal synthesis of vertically aligned lead zirconate titanate nanowire arrays
-
Lin, Y., Liu, Y. & Sodano, H. A. Hydrothermal synthesis of vertically aligned lead zirconate titanate nanowire arrays. Appl. Phys. Lett. 95, 122901 (2009).
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 122901
-
-
Lin, Y.1
Liu, Y.2
Sodano, H.A.3
-
22
-
-
68949194549
-
Review: Environmental friendly lead-free piezoelectric materials
-
Panda, P. K. Review: environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 44, 5049-5062 (2009).
-
(2009)
J. Mater. Sci.
, vol.44
, pp. 5049-5062
-
-
Panda P., .K.1
-
23
-
-
0028277134
-
Capillary forces between colloidal particles
-
Kralchevsky, P. A. & Nagayama, K. Capillary forces between colloidal particles. Langmuir 10, 23-36 (1994).
-
(1994)
Langmuir
, vol.10
, pp. 23-36
-
-
Kralchevsky, P.A.1
Nagayama, K.2
-
24
-
-
53549118866
-
Shape-controlled monocrystalline ferroelectric barium titanate nanostructures: From nanotubes and nanowires to ordered nanostructures
-
Bao, N., Shen, L., Srinivasan, G., Yanagisawa, K. & Gupta, A. Shape-controlled monocrystalline ferroelectric barium titanate nanostructures: From nanotubes and nanowires to ordered nanostructures. J. Phys. Chem. C 112, 8634-8642 (2008).
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 8634-8642
-
-
Bao, N.1
Shen, L.2
Srinivasan, G.3
Yanagisawa, K.4
Gupta, A.5
-
25
-
-
67649458182
-
Size-controlled one-dimensional monocrystalline BaTiO3 nanostructures
-
Bao, N. et al. Size-controlled one-dimensional monocrystalline BaTiO3 nanostructures. Appl. Phys. Lett. 94, 253109-253109-3 (2009).
-
(2009)
Appl. Phys. Lett.
, vol.94
, pp. 253109-2531093
-
-
Bao, N.1
-
26
-
-
0033164523
-
Investigations on procedures of the fabrication of barium titanate ceramic films under hydrothermal-electrochemical conditions
-
Wu, Z. & Yoshimura, M. Investigations on procedures of the fabrication of barium titanate ceramic films under hydrothermal-electrochemical conditions. Solid State Ionics 122, 161-172 (1999).
-
(1999)
Solid State Ionics
, vol.122
, pp. 161-172
-
-
Wu, Z.1
Yoshimura, M.2
-
27
-
-
33747374591
-
Barium titanate nanocrystals and nanocrystal thin films: Synthesis, ferroelectricity, and dielectric properties
-
Huang, L. et al. Barium titanate nanocrystals and nanocrystal thin films: Synthesis, ferroelectricity, and dielectric properties. J. Appl. Phys. 100, 034316-034316-10 (2006).
-
(2006)
J. Appl. Phys.
, vol.100
, pp. 034316-03431610
-
-
Huang, L.1
-
28
-
-
63749083966
-
Performance evaluation of MEMS accelerometers
-
Albarbar, A., Badri, A., Sinha, J. K. & Starr, A. Performance evaluation of MEMS accelerometers. Measurement 42, 790-795 (2009).
-
(2009)
Measurement
, vol.42
, pp. 790-795
-
-
Albarbar, A.1
Badri, A.2
Sinha, J.K.3
Starr, A.4
-
29
-
-
85025776191
-
Frequency Response Functions & Coherence Functions for Multiple Input Linear Systems. National Aeronautics and Space Administration
-
REFS
-
Enochson L. D. Frequency Response Functions & Coherence Functions For Multiple Input Linear Systems. National Aeronautics and Space Administration NASA-CR-32, 80P REFS 1964
-
(1964)
NASA-CR-32
, vol.80 P
-
-
Enochson L., .D.1
-
30
-
-
70349761503
-
Morphology-controlled synthesis of barium titanate nanostructures
-
Huang, K., Huang, T. & Hsieh, W. Morphology-controlled synthesis of barium titanate nanostructures. Inorg. Chem. 48, 9180-9184 (2009).
-
(2009)
Inorg. Chem.
, vol.48
, pp. 9180-9184
-
-
Huang, K.1
Huang, T.2
Hsieh, W.3
-
31
-
-
84860429400
-
Piezoelectric nanofibers for energy scavenging applications
-
Chang, J., Dommer, M., Chang, C. & Lin, L. Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1, 356-371 (2012).
-
(2012)
Nano Energy
, vol.1
, pp. 356-371
-
-
Chang, J.1
Dommer, M.2
Chang, C.3
Lin, L.4
-
32
-
-
58349101597
-
Characteristics of output voltage and current of integrated nanogenerators
-
Yang, R., Qin, Y., Li, C., Dai, L. & Wang, Z. L. Characteristics of output voltage and current of integrated nanogenerators. Appl. Phys. Lett. 94, 022905-3 (2009).
-
(2009)
Appl. Phys. Lett.
, vol.94
, pp. 022905-3
-
-
Yang, R.1
Qin, Y.2
Li, C.3
Dai, L.4
Wang, Z.L.5
-
33
-
-
34249076933
-
Axial polarization switching in ferroelectric BaTiO3 nanowire
-
Wang, Z., Hu, J. & Yu, M. Axial polarization switching in ferroelectric BaTiO3 nanowire. Nanotechnology 18, 235203 (2007).
-
(2007)
Nanotechnology
, vol.18
, pp. 235203
-
-
Wang, Z.1
Hu, J.2
Yu, M.3
-
34
-
-
84860377504
-
Seedless synthesis of patterned ZnO nanowire arrays on metal thin films (Au, Ag, Cu, Sn) and their application for flexible electromechanical sensing
-
Wen, X., Wu, W., Ding, Y. & Wang, Z. L. Seedless synthesis of patterned ZnO nanowire arrays on metal thin films (Au, Ag, Cu, Sn) and their application for flexible electromechanical sensing. J. Mater. Chem. 22, 9469-9476 (2012).
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 9469-9476
-
-
Wen, X.1
Wu, W.2
Ding, Y.3
Wang, Z.L.4
-
35
-
-
79955853386
-
Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires
-
Tian, J. H. et al. Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires. Nanotechnology 22, 245601 (2011).
-
(2011)
Nanotechnology
, vol.22
, pp. 245601
-
-
Tian, J.H.1
-
36
-
-
77952076828
-
Piezotronic and piezophototronic effects
-
Wang, Z. L. Piezotronic and piezophototronic effects. J. Phys. Chem. Lett. 1, 1388-1393 (2010).
-
(2010)
J. Phys. Chem. Lett.
, vol.1
, pp. 1388-1393
-
-
Wang Z., .L.1
-
37
-
-
84878020774
-
Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging
-
Wu, W., Wen, X. & Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340, 952-957 (2013).
-
(2013)
Science
, vol.340
, pp. 952-957
-
-
Wu, W.1
Wen, X.2
Wang, Z.L.3
-
38
-
-
58149263205
-
Oriented single crystalline titanium dioxide nanowires
-
Liu, B., Boercker, J. E. & Aydil, E. S. Oriented single crystalline titanium dioxide nanowires. Nanotechnology 19, 505604 (2008).
-
(2008)
Nanotechnology
, vol.19
, pp. 505604
-
-
Liu, B.1
Boercker, J.E.2
Aydil, E.S.3
-
39
-
-
77949349489
-
Hydrothermally synthesized aligned arrays of self-assembled multiwalled hydrogen titanate nanotubes
-
Chatterjee, S., Bhattacharyya, S., Khushalani, D. & Ayyub, P. Hydrothermally synthesized aligned arrays of self-assembled multiwalled hydrogen titanate nanotubes. Cryst. Growth Des. 10, 1215-1220 (2010).
-
(2010)
Cryst. Growth Des.
, vol.10
, pp. 1215-1220
-
-
Chatterjee, S.1
Bhattacharyya, S.2
Khushalani, D.3
Ayyub, P.4
-
40
-
-
84863405910
-
An AlN MEMS piezoelectric microphone for aeroacoustic applications
-
Williams, M. D., Griffin, B. A., Reagan, T. N., Underbrink, J. R. & Sheplak, M. An AlN MEMS piezoelectric microphone for aeroacoustic applications. J. Microelectromech. Syst. 21, 270-283 (2012).
-
(2012)
J. Microelectromech. Syst.
, vol.21
, pp. 270-283
-
-
Williams, M.D.1
Griffin, B.A.2
Reagan, T.N.3
Underbrink, J.R.4
Sheplak, M.5
-
41
-
-
33748353492
-
-
LTC6240/LTC6241/LTC6242 Single/Dual/Quad 18 MHz, Low noise, Rail-to- Rail Output, CMOS Op Amps
-
LTC6240/LTC6241/LTC6242 Single/Dual/Quad 18 MHz, Low noise, Rail-to- Rail Output, CMOS Op Amps. Linear Technology http://cds.linear.com/docs/ en/datasheet/624012fe.pdf (2011).
-
(2011)
Linear Technology
-
-
-
42
-
-
84859321131
-
Well-ordered arrays of ferroelectric single-crystalline BaTiO3 nanostructures
-
Chen, D. et al. Well-ordered arrays of ferroelectric single-crystalline BaTiO3 nanostructures. Phys. Stat. Solidi A 209, 714-717 (2012).
-
(2012)
Phys. Stat. Solidi A
, vol.209
, pp. 714-717
-
-
Chen, D.1
-
43
-
-
61649089562
-
Hydrothermal synthesis and crystal growth studies of BaTiO3 Using Ti nanotube precursors
-
Maxim, F., Ferreira, P., Vilarinho, P. M. & Reaney, I. Hydrothermal synthesis and crystal growth studies of BaTiO3 Using Ti nanotube precursors. Cryst. Growth Des. 8, 3309-3315 (2008).
-
(2008)
Cryst. Growth Des.
, vol.8
, pp. 3309-3315
-
-
Maxim, F.1
Ferreira, P.2
Vilarinho, P.M.3
Reaney, I.4
-
44
-
-
61549099921
-
Growth mechanism of shape-controlled barium titanate nanostructures through soft chemical reaction
-
Kang, S., Park, B. H. & Kim, Y. Growth mechanism of shape-controlled barium titanate nanostructures through soft chemical reaction. Cryst. Growth Des. 8, 3180-3186 (2008).
-
(2008)
Cryst. Growth Des.
, vol.8
, pp. 3180-3186
-
-
Kang, S.1
Park, B.H.2
Kim, Y.3
-
45
-
-
34147110453
-
Chemical composition and phase identification of sodium titanate nanostructures grown from titania by hydrothermal processing
-
DOI 10.1016/j.jpcs.2007.02.011, PII S0022369707000777
-
Zárate, R. A., Fuentes, S., Wiff, J. P., Fuenzalida, V. M. & Cabrera, A. L. Chemical composition and phase identification of sodium titanate nanostructures grown from titania by hydrothermal processing. J. Phys. Chem. Solids 68, 628-637 (2007). (Pubitemid 46560613)
-
(2007)
Journal of Physics and Chemistry of Solids
, vol.68
, Issue.4
, pp. 628-637
-
-
Zarate, R.A.1
Fuentes, S.2
Wiff, J.P.3
Fuenzalida, V.M.4
Cabrera, A.L.5
-
46
-
-
33745996359
-
A study on the structure and thermal stability of titanate nanotubes as a function of sodium content
-
DOI 10.1016/j.solidstatesciences.2006.02.039, PII S1293255806000896
-
Morgado, Jr E. et al. A study on the structure and thermal stability of titanate nanotubes as a function of sodium content. Solid State Sci. 8, 888-900 (2006). (Pubitemid 44066855)
-
(2006)
Solid State Sciences
, vol.8
, Issue.8
, pp. 888-900
-
-
Morgado Jr., E.1
De Abreu, M.A.S.2
Pravia, O.R.C.3
Marinkovic, B.A.4
Jardim, P.M.5
Rizzo, F.C.6
Araujo, A.S.7
-
47
-
-
37649017721
-
The influence of preamplifiers on the piezoelectric sensor's dynamic property
-
Liu, W. Q., Feng, Z. H., Liu, R. B. & Zhang, J. The influence of preamplifiers on the piezoelectric sensor's dynamic property. Rev. Sci. Instrum. 78, 125107-4 (2007).
-
(2007)
Rev. Sci. Instrum.
, vol.78
, pp. 125107-4
-
-
Liu, W.Q.1
Feng, Z.H.2
Liu, R.B.3
Zhang, J.4
|