메뉴 건너뛰기




Volumn 2, Issue 1, 2013, Pages 1-11

SCLpredT: Ab initio and homology-based prediction of subcellular localization by N-to-1 neural networks

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84887270066     PISSN: None     EISSN: 21931801     Source Type: Journal    
DOI: 10.1186/2193-1801-2-502     Document Type: Article
Times cited : (12)

References (29)
  • 2
    • 0035812694 scopus 로고    scopus 로고
    • Protein structure prediction and structural genomics
    • Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294: 93-96.
    • (2001) Science , vol.294 , pp. 93-96
    • Baker, D.1    Sali, A.2
  • 3
    • 33749139123 scopus 로고    scopus 로고
    • Distill a suite of web servers for the prediction of one-, two-and three-dimensional structural features of proteins
    • Baú D, Martin A, Mooney C, Vullo A, Walsh I, Pollastri G (2006) Distill a suite of web servers for the prediction of one-, two-and three-dimensional structural features of proteins. BMC Bioinformatics 7: 402.
    • (2006) BMC Bioinformatics , vol.7 , pp. 402
    • Baú, D.1    Martin, A.2    Mooney, C.3    Vullo, A.4    Walsh, I.5    Pollastri, G.6
  • 4
    • 3042521098 scopus 로고    scopus 로고
    • Improved prediction of signal peptides: SignalP 3.0
    • Bendtsen J, Nielsen H, Von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340(4): 783-95.
    • (2004) J Mol Biol , vol.340 , Issue.4 , pp. 783-795
    • Bendtsen, J.1    Nielsen, H.2    Von Heijne, G.3    Brunak, S.4
  • 5
    • 19544372994 scopus 로고    scopus 로고
    • Prediction of subcellular localization using sequence-biased recurrent networks
    • Bodén M, Hawkins J (2005) Prediction of subcellular localization using sequence-biased recurrent networks. Bioinformatics 21(10): 2279-2286.
    • (2005) Bioinformatics , vol.21 , Issue.10 , pp. 2279-2286
    • Bodén, M.1    Hawkins, J.2
  • 6
    • 44249095907 scopus 로고    scopus 로고
    • The prediction of protein subcellular localization from sequence: A shortcut to functional genome annotation
    • Casadio R, Martelli P, Pierleoni A (2008) The prediction of protein subcellular localization from sequence: a shortcut to functional genome annotation. Brief Funct Genomic Proteomic 7: 63-73.
    • (2008) Brief Funct Genomic Proteomic , vol.7 , pp. 63-73
    • Casadio, R.1    Martelli, P.2    Pierleoni, A.3
  • 7
    • 0034331073 scopus 로고    scopus 로고
    • Finding nuclear localization signals
    • Cokol M, Nair R, Rost B (2000) Finding nuclear localization signals. EMBO Rep 1(5): 411-415.
    • (2000) EMBO Rep , vol.1 , Issue.5 , pp. 411-415
    • Cokol, M.1    Nair, R.2    Rost, B.3
  • 8
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification of biology
    • Consortium TGO (2000) Gene ontology: tool for the unification of biology. Nat Genet 25: 25-29.
    • (2000) Nat Genet , vol.25 , pp. 25-29
    • Consortium, T.G.O.1
  • 9
    • 0034697980 scopus 로고    scopus 로고
    • Predicting subcellular localization of proteins based on their N-terminal amino acid sequence
    • Emanuelsson O, Nielsen H, Brunak S, Von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300: 1005-1016.
    • (2000) J Mol Biol , vol.300 , pp. 1005-1016
    • Emanuelsson, O.1    Nielsen, H.2    Brunak, S.3    Von Heijne, G.4
  • 11
    • 70349317157 scopus 로고    scopus 로고
    • Beyond the twilight zone: Automated prediction of structural properties of proteins by recursive neural networks and remote homology information
    • Mooney C, Pollastri G (2009) Beyond the twilight zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information. Proteins 77: 181-90.
    • (2009) Proteins , vol.77 , pp. 181-190
    • Mooney, C.1    Pollastri, G.2
  • 12
    • 39049179145 scopus 로고    scopus 로고
    • Protein structural motif prediction in multidimensional ø-ψ space leads to improved secondary structure prediction
    • Mooney C, Vullo A, Pollastri G (2006) Protein structural motif prediction in multidimensional ø-ψ space leads to improved secondary structure prediction. J Comput Biol 13(8): 1489-1502.
    • (2006) J Comput Biol , vol.13 , Issue.8 , pp. 1489-1502
    • Mooney, C.1    Vullo, A.2    Pollastri, G.3
  • 13
    • 80053937952 scopus 로고    scopus 로고
    • SCLpred: Protein subcellular localization prediction by N-to-1 neural networks
    • Mooney C, Wang YH, Pollastri G (2011) SCLpred: protein subcellular localization prediction by N-to-1 neural networks. Bioinformatics 27(20): 2812-9.
    • (2011) Bioinformatics , vol.27 , Issue.20 , pp. 2812-2819
    • Mooney, C.1    Wang, Y.H.2    Pollastri, G.3
  • 14
    • 84867323770 scopus 로고    scopus 로고
    • Towards the improved discovery and design of functional Peptides: Common features of diverse classes permit generalized prediction of bioactivity
    • Mooney C, Haslam N, Pollastri G, Shields DC (2012) Towards the improved discovery and design of functional Peptides: common features of diverse classes permit generalized prediction of bioactivity. PLoS ONE 7(10): e45012.
    • (2012) PLoS ONE , vol.7 , Issue.10
    • Mooney, C.1    Haslam, N.2    Pollastri, G.3    Shields, D.C.4
  • 15
    • 16244398103 scopus 로고    scopus 로고
    • Mimicking cellular sorting improves prediction of subcellular localization
    • Nair R, Rost B (2005) Mimicking cellular sorting improves prediction of subcellular localization. J Mol Biol 348: 85-100.
    • (2005) J Mol Biol , vol.348 , pp. 85-100
    • Nair, R.1    Rost, B.2
  • 17
    • 17444397116 scopus 로고    scopus 로고
    • Porter: A new, accurate server for protein secondary structure prediction
    • Pollastri G, McLysaght A (2005) Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21(8): 1719-1720.
    • (2005) Bioinformatics , vol.21 , Issue.8 , pp. 1719-1720
    • Pollastri, G.1    McLysaght, A.2
  • 18
    • 34547127137 scopus 로고    scopus 로고
    • Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information
    • Pollastri G, Martin AJ, Mooney C, Vullo A (2007) Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information. BMC Bioinformatics 8: 201.
    • (2007) BMC Bioinformatics , vol.8 , pp. 201
    • Pollastri, G.1    Martin, A.J.2    Mooney, C.3    Vullo, A.4
  • 19
    • 0027169638 scopus 로고
    • Improved prediction of protein secondary structure by use of sequence profiles and neural networks
    • Rost B, Sander C (1993) Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proc Nutl Acad Sci USA 90(20): 7558-7562.
    • (1993) Proc Nutl Acad Sci USA , vol.90 , Issue.20 , pp. 7558-7562
    • Rost, B.1    Sander, C.2
  • 21
    • 80755169550 scopus 로고    scopus 로고
    • Improving the detection of transmembrane β-barrel chains with N-to-1 extreme learning machines
    • Savojardo C, Fariselli P, Casadio R (2011) Improving the detection of transmembrane β-barrel chains with N-to-1 extreme learning machines. Bioinformatics 27(22): 3123-3128.
    • (2011) Bioinformatics , vol.27 , Issue.22 , pp. 3123-3128
    • Savojardo, C.1    Fariselli, P.2    Casadio, R.3
  • 22
    • 34447304880 scopus 로고    scopus 로고
    • Sherloc: High-accuracy prediction of protein subcellular localization by integrating text and protein sequence data
    • Shatkay H, Höglund A, Brady S, Blum T, Dönnes P, Kohlbacher O (2007) Sherloc: high-accuracy prediction of protein subcellular localization by integrating text and protein sequence data. Bioinformatics 23(11): 1410-1417.
    • (2007) Bioinformatics , vol.23 , Issue.11 , pp. 1410-1417
    • Shatkay, H.1    Höglund, A.2    Brady, S.3    Blum, T.4    Dönnes, P.5    Kohlbacher, O.6
  • 23
    • 34347388470 scopus 로고    scopus 로고
    • UniRef: Comprehensive and non-redundant UniProt reference clusters
    • Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH (2007) UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23(10): 1282-1288.
    • (2007) Bioinformatics , vol.23 , Issue.10 , pp. 1282-1288
    • Suzek, B.E.1    Huang, H.2    McGarvey, P.3    Mazumder, R.4    Wu, C.H.5
  • 24
    • 84872383422 scopus 로고    scopus 로고
    • Accurate prediction of protein enzymatic class by N-to-1 Neural Networks
    • Volpato V, Adelfio A, Pollastri G (2013) Accurate prediction of protein enzymatic class by N-to-1 Neural Networks. BMC Bioinformatics 14(S1): S11.
    • (2013) BMC Bioinformatics , vol.14 , Issue.S1
    • Volpato, V.1    Adelfio, A.2    Pollastri, G.3
  • 25
    • 33745610096 scopus 로고    scopus 로고
    • A two-stage approach for improved prediction of residue contact maps
    • Vullo A, Walsh I, Pollastri G (2006a) A two-stage approach for improved prediction of residue contact maps. BMC Bioinformatics 7: 180.
    • (2006) BMC Bioinformatics , vol.7 , pp. 180
    • Vullo, A.1    Walsh, I.2    Pollastri, G.3
  • 26
    • 33747868721 scopus 로고    scopus 로고
    • Spritz: A server for the prediction of intrinsically disordered regions in protein sequences using kernel machines
    • Vullo A, Bortolami O, Pollastri G, Tosatto S (2006b) Spritz: a server for the prediction of intrinsically disordered regions in protein sequences using kernel machines. Nucleic Acids Res 34(suppl 2): W164-W168.
    • (2006) Nucleic Acids Res , vol.34 , Issue.SUPPL. 2
    • Vullo, A.1    Bortolami, O.2    Pollastri, G.3    Tosatto, S.4
  • 27
    • 61449126555 scopus 로고    scopus 로고
    • Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks
    • Walsh I, Baù D, Martin A, Mooney C, Vullo A, Pollastri G (2009a) Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks. BMC Struc Biol 9: 5.
    • (2009) BMC Struc Biol , vol.9 , pp. 5
    • Walsh, I.1    Baù, D.2    Martin, A.3    Mooney, C.4    Vullo, A.5    Pollastri, G.6
  • 29
    • 79959956361 scopus 로고    scopus 로고
    • CSpritz: Accurate prediction of protein disorder segments with annotation for homology, secondary structure and linear motifs
    • Walsh I, Martin A, Di Domenico T, Vullo A, Pollastri G, Tosatto S (2011) CSpritz: accurate prediction of protein disorder segments with annotation for homology, secondary structure and linear motifs. Nucleic Acids Res 39(suppl 2): W190-W196.
    • (2011) Nucleic Acids Res , vol.39 , Issue.SUPPL. 2 , pp. 190-196
    • Walsh, I.1    Martin, A.2    Di Domenico, T.3    Vullo, A.4    Pollastri, G.5    Tosatto, S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.