메뉴 건너뛰기




Volumn 35, Issue 2, 2014, Pages 182-197

Neural predictive control for single-speed ground source heat pumps connected to a floor heating system for typical French dwelling

Author keywords

artificial neural networks; energy savings; floor heating; Ground source heat pump; predictive control

Indexed keywords

CONVENTIONAL CONTROLLERS; EXTERNAL DISTURBANCES; FLOOR HEATING; FLOOR HEATING SYSTEMS; NEURAL PREDICTIVE CONTROLLERS; NEURAL-PREDICTIVE CONTROLS; PREDICTIVE CONTROL; PREDICTIVE CONTROLLER;

EID: 84887220230     PISSN: 01436244     EISSN: 14770849     Source Type: Journal    
DOI: 10.1177/0143624413480370     Document Type: Article
Times cited : (20)

References (29)
  • 1
    • 0036027765 scopus 로고    scopus 로고
    • Application of adaptive predictive control to a floor heating system with a large thermal lag
    • Chen TY. Application of adaptive predictive control to a floor heating system with a large thermal lag. Energy Building. 2002 ; 34 (1). 45-51
    • (2002) Energy Building , vol.34 , Issue.1 , pp. 45-51
    • Chen, T.Y.1
  • 2
    • 79957846029 scopus 로고    scopus 로고
    • Performance and control of domestic ground-source heat pumps in retrofit installations
    • Boait PJ, Fan D, Stafford A. Performance and control of domestic ground-source heat pumps in retrofit installations. Energy Building. 2011 ; 43 (8). 1968-1976
    • (2011) Energy Building , vol.43 , Issue.8 , pp. 1968-1976
    • Boait, P.J.1    Fan, D.2    Stafford, A.3
  • 4
    • 0006841706 scopus 로고
    • Dynamic control: Fundamentals and considerations
    • Hartman TB. Dynamic control: Fundamentals and considerations. ASHREA Transact 4. 1988 ; 1: 599-609
    • (1988) ASHREA Transact 4 , vol.1 , pp. 599-609
    • Hartman, T.B.1
  • 6
    • 0029357587 scopus 로고
    • Optimal indoor temperature control using a predictor
    • Lute P, van Paassen D. Optimal indoor temperature control using a predictor. IEEE Control Systems. 1995 ; 12: 4-9
    • (1995) IEEE Control Systems , vol.12 , pp. 4-9
    • Lute, P.1    Van Paassen, D.2
  • 7
    • 0029713371 scopus 로고    scopus 로고
    • Neural networks applied to buildings - A tutorial and case studies in prediction and adaptive control
    • Curtiss PS, Shavit G, Kreider K. Neural networks applied to buildings - a tutorial and case studies in prediction and adaptive control. ASHRAE Transact. 1996 ; 102 ( 1 ):
    • (1996) ASHRAE Transact , vol.102 , Issue.1
    • Curtiss, P.S.1    Shavit, G.2    Kreider, K.3
  • 8
    • 0034961578 scopus 로고    scopus 로고
    • Neurobat, a predictive and adaptive heating control system using artificial neural networks
    • Morel N, Bauer M, El-Khoury, et al. Neurobat, a predictive and adaptive heating control system using artificial neural networks. Int J Solar Energy. 2000 ; 21: 161-201
    • (2000) Int J Solar Energy , vol.21 , pp. 161-201
    • Morel, N.1    Bauer, M.2    El-Khoury3
  • 9
    • 78649443473 scopus 로고    scopus 로고
    • Application of model based predictive control for water-based floor heating in low energy residential buildings
    • Karlsson H, Hagentoft C-E. Application of model based predictive control for water-based floor heating in low energy residential buildings. Building Environ. 2011 ; 46 (3). 556-569
    • (2011) Building Environ , vol.46 , Issue.3 , pp. 556-569
    • Karlsson, H.1    Hagentoft, C.-E.2
  • 10
    • 84855239333 scopus 로고    scopus 로고
    • Study of the optimal control problem formulation for modulating air-to-water heat pumps connected to a residential floor heating system
    • Verhelst C, Logist F, Van Impe J, et al. Study of the optimal control problem formulation for modulating air-to-water heat pumps connected to a residential floor heating system. Energy Building. 2012 ; 45: 43-53
    • (2012) Energy Building , vol.45 , pp. 43-53
    • Verhelst, C.1    Logist, F.2    Van Impe, J.3
  • 11
    • 1642412620 scopus 로고    scopus 로고
    • A neural network controller for hydronic heating systems of solar buildings
    • Argiriou AA, Bellas-Velidis I, Kummert M, et al. A neural network controller for hydronic heating systems of solar buildings. Neural Network. 2004 ; 17 (3). 427-440
    • (2004) Neural Network , vol.17 , Issue.3 , pp. 427-440
    • Argiriou, A.A.1    Bellas-Velidis, I.2    Kummert, M.3
  • 13
    • 0142227021 scopus 로고    scopus 로고
    • A new design guideline for the heating and cooling curve in AHU units of HVAC systems
    • Elkhuizen PA, Peitsman HC, Wienk WJ. A new design guideline for the heating and cooling curve in AHU units of HVAC systems. Building Serv Eng Res Technol. 2003 ; 24 (3). 191-202
    • (2003) Building Serv Eng Res Technol , vol.24 , Issue.3 , pp. 191-202
    • Elkhuizen, P.A.1    Peitsman, H.C.2    Wienk, W.J.3
  • 14
    • 84893676407 scopus 로고
    • Chaufage des bâtiments: Intermittence et lois de régulation en boucle ouverte
    • Fulcheri L, Neirac FP, Mouel AL, et al. Chaufage des bâtiments: intermittence et lois de régulation en boucle ouverte. Revue générale de thermique. 1994 ; 374: 77-91
    • (1994) Revue Générale de Thermique , vol.374 , pp. 77-91
    • Fulcheri, L.1    Neirac, F.P.2    Mouel, A.L.3
  • 15
    • 0038238083 scopus 로고    scopus 로고
    • Application of artificial neural network to predict the optimal start time for heating system in building
    • Yang I-H, Yeo M-S, Kim K-W. Application of artificial neural network to predict the optimal start time for heating system in building. Energy Conver Manage. 2003 ; 44 (17). 2791-2809
    • (2003) Energy Conver Manage , vol.44 , Issue.17 , pp. 2791-2809
    • Yang, I.-H.1    Yeo, M.-S.2    Kim, K.-W.3
  • 16
    • 78651445032 scopus 로고    scopus 로고
    • Model predictive control of a building heating system: The first experience
    • Prívara S, Siroký J, Ferkl L, et al. Model predictive control of a building heating system: The first experience. Energy Building. 2010 ; 43 (2-3). 564-572
    • (2010) Energy Building , vol.43 , Issue.23 , pp. 564-572
    • Prívara, S.1    Siroký, J.2    Ferkl, L.3
  • 18
    • 77958508507 scopus 로고    scopus 로고
    • Sizing calculation spreadsheet vertical geothermal borefields
    • Philippe M, Bernier M, Marchio D. Sizing calculation spreadsheet vertical geothermal borefields. ASHRAE J. 2010 ; 52 (7). 20-28
    • (2010) ASHRAE J , vol.52 , Issue.7 , pp. 20-28
    • Philippe, M.1    Bernier, M.2    Marchio, D.3
  • 20
    • 84877458110 scopus 로고    scopus 로고
    • (R14SP1). Mathworks Inc., Ma., USA
    • MATLAB. Version 7.0.1, (R14SP1). Mathworks Inc., Ma., USA, http://wwwmathworkscom.
    • MATLAB. Version 7.0.1
  • 22
    • 0030172738 scopus 로고    scopus 로고
    • Short term electric load forecasting with artificial neural networks
    • Chernichow T, Piras A, Imhof K, et al. Short term electric load forecasting with artificial neural networks. Eng Intelligent Syst. 1996 ; 2: 85-99
    • (1996) Eng Intelligent Syst , vol.2 , pp. 85-99
    • Chernichow, T.1    Piras, A.2    Imhof, K.3
  • 23
    • 0034140815 scopus 로고    scopus 로고
    • Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques
    • Sfetsos A, Coonick AH. Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques. Solar Energy. 2000 ; 68 (2). 169-178
    • (2000) Solar Energy , vol.68 , Issue.2 , pp. 169-178
    • Sfetsos, A.1    Coonick, A.H.2
  • 24
    • 79954613949 scopus 로고    scopus 로고
    • Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database
    • Marquez R, Coimbra CFM. Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database. Solar Energy. 2011 ; 85 (5). 746-756
    • (2011) Solar Energy , vol.85 , Issue.5 , pp. 746-756
    • Marquez, R.1    Coimbra, C.F.M.2
  • 25
    • 0030149443 scopus 로고    scopus 로고
    • An artificial neural network hourly temperature forecaster with applications in load forecasting
    • Khotanzad A, Davis MH, Abaye A, et al. An artificial neural network hourly temperature forecaster with applications in load forecasting. IEEE Trans Power Syst. 1996 ; 11 (2). 870-876
    • (1996) IEEE Trans Power Syst , vol.11 , Issue.2 , pp. 870-876
    • Khotanzad, A.1    Davis, M.H.2    Abaye, A.3
  • 26
    • 0036532622 scopus 로고    scopus 로고
    • Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia
    • Tasadduq I, Rehman S, Bubshait K. Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia. Renew Energy. 2002 ; 25 (4). 545-554
    • (2002) Renew Energy , vol.25 , Issue.4 , pp. 545-554
    • Tasadduq, I.1    Rehman, S.2    Bubshait, K.3
  • 27
    • 0025535525 scopus 로고
    • Modeling daylight availability and irradiance components from direct and global irradiance
    • Perez R, Ineichen P, Seals R, et al. Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy. 1990 ; 44: 271-289
    • (1990) Solar Energy , vol.44 , pp. 271-289
    • Perez, R.1    Ineichen, P.2    Seals, R.3
  • 29
    • 79953753537 scopus 로고    scopus 로고
    • The influence of the borehole short-time response on ground source heat pump system efficiency
    • Partenay V, Riederer P, Salque T, et al. The influence of the borehole short-time response on ground source heat pump system efficiency. Energy Building. 2011 ; 43 (6). 1280-1287
    • (2011) Energy Building , vol.43 , Issue.6 , pp. 1280-1287
    • Partenay, V.1    Riederer, P.2    Salque, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.