-
1
-
-
28444476416
-
Control theory from the geometric viewpoint
-
Springer, Berlin
-
A. A. AGRACHEV - Y. L. SACHKOV, Control Theory from the Geometric Viewpoint. Encyclopaedia Math. Sci. 87, Springer, Berlin, 2004.
-
(2004)
Encyclopaedia Math. Sci.
, vol.87
-
-
Agrachev, A.A.1
Sachkov, Y.L.2
-
2
-
-
84968488966
-
Bounds for the fundamental solution of a parabolic equation
-
D. G. ARONSON, Bounds for the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc. 73 (1967), 890-896.
-
(1967)
Bull. Amer. Math. Soc.
, vol.73
, pp. 890-896
-
-
Aronson, D.G.1
-
3
-
-
0003131889
-
Local behavior of solutions of quasilinear parabolic equations
-
D. G. ARONSON - J. SERRIN, Local behavior of solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal. 25 (1967), 81-122.
-
(1967)
Arch. Ration. Mech. Anal.
, vol.25
, pp. 81-122
-
-
Aronson, D.G.1
Serrin, J.2
-
4
-
-
84887526788
-
Pointwise local estimates and Gaussian upper bounds for a class of uniformly subelliptic ultraparabolic operators
-
to appear
-
C. CINTI - S. POLIDORO, Pointwise local estimates and Gaussian upper bounds for a class of uniformly subelliptic ultraparabolic operators, J. Math. Anal. Appl. (2007), to appear.
-
(2007)
J. Math. Anal. Appl.
-
-
Cinti, C.1
Polidoro, S.2
-
6
-
-
84881102143
-
Schauder estimates, harnack inequality and Gaussian lower bound for kolmogorov type operators in non-divergence form
-
M. DI FRANCESCO - S. POLIDORO, Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov type operators in non-divergence form. Adv. Differential Equations 11 (2006), 1261-1320.
-
(2006)
Adv. Differential Equations
, vol.11
, pp. 1261-1320
-
-
Di Francesco, M.1
Polidoro, S.2
-
7
-
-
15244346736
-
Hypoelliptic second order differential equations
-
L. HÖRMANDER, Hypoelliptic second order differential equations. Acta Math. 119 (1967), 147-171.
-
(1967)
Acta Math.
, vol.119
, pp. 147-171
-
-
Hörmander, L.1
-
8
-
-
0001178379
-
Estimates for the heat kernel for a sum of squares of vector fields
-
D. S. JERISON - A. SÁNCHEZ-CALLE, Estimates for the heat kernel for a sum of squares of vector fields. Indiana Univ. Math. J. 35 (1986), 835-854.
-
(1986)
Indiana Univ. Math. J.
, vol.35
, pp. 835-854
-
-
Jerison, D.S.1
Sánchez-Calle, A.2
-
9
-
-
0002406886
-
Geometric control theory
-
Cambridge Univ. Press, Cambridge
-
V. JURDJEVIC, Geometric Control Theory. Cambridge Stud. Adv. Math. 52, Cambridge Univ. Press, Cambridge, 1997.
-
(1997)
Cambridge Stud. Adv. Math.
, vol.52
-
-
Jurdjevic, V.1
-
10
-
-
33750156225
-
An invariant harnack inequality for a class of hypoelliptic ultraparabolic equations
-
A. E. KOGOJ - E. LANCONELLI, An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations. Mediterr. J. Math. 1 (2004), 51-80.
-
(2004)
Mediterr. J. Math.
, vol.1
, pp. 51-80
-
-
Kogoj, A.E.1
Lanconelli, E.2
-
11
-
-
34848862007
-
Link of groups and homogeneous hörmander operators
-
A. E. KOGOJ - E. LANCONELLI, Link of groups and homogeneous Hörmander operators. Proc. Amer. Math. Soc. 135 (2007), 2019-2030.
-
(2007)
Proc. Amer. Math. Soc.
, vol.135
, pp. 2019-2030
-
-
Kogoj, A.E.1
Lanconelli, E.2
-
14
-
-
84980078895
-
A harnack inequality for parabolic differential equations
-
J. MOSER, A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math. 17 (1964), 101-134.
-
(1964)
Comm. Pure Appl. Math.
, vol.17
, pp. 101-134
-
-
Moser, J.1
-
15
-
-
0041862120
-
Balls and metrics defined by vector fields. I. Basic properties
-
A. NAGEL - E. M. STEIN - S. WAINGER, Balls and metrics defined by vector fields. I. Basic properties. Acta Math. 155 (1985), 103-147.
-
(1985)
Acta Math.
, vol.155
, pp. 103-147
-
-
Nagel, A.1
Stein, E.M.2
Wainger, S.3
-
17
-
-
33750177062
-
Harnack inequalities and Gaussian estimates for a class of hypoelliptic operators
-
DOI 10.1090/S0002-9947-06-04050-5, PII S0002994706040505
-
A. PASCUCCI - S. POLIDORO, Harnack inequalities and Gaussian estimates for a class of hypoelliptic operators. Trans. Amer. Math. Soc. 358 (2006), 4873-4893. (Pubitemid 44598802)
-
(2006)
Transactions of the American Mathematical Society
, vol.358
, Issue.11
, pp. 4873-4893
-
-
Pascucci, A.1
Polidoro, S.2
|