메뉴 건너뛰기




Volumn 18, Issue 4, 2007, Pages 333-342

Gaussian estimates for hypoelliptic operators via optimal control

Author keywords

Gaussian bounds; Hypoelliptic equations; Lie groups; Optimal control theory

Indexed keywords


EID: 84887214337     PISSN: 11206330     EISSN: 17200768     Source Type: Journal    
DOI: 10.4171/RLM/499     Document Type: Article
Times cited : (27)

References (18)
  • 1
    • 28444476416 scopus 로고    scopus 로고
    • Control theory from the geometric viewpoint
    • Springer, Berlin
    • A. A. AGRACHEV - Y. L. SACHKOV, Control Theory from the Geometric Viewpoint. Encyclopaedia Math. Sci. 87, Springer, Berlin, 2004.
    • (2004) Encyclopaedia Math. Sci. , vol.87
    • Agrachev, A.A.1    Sachkov, Y.L.2
  • 2
    • 84968488966 scopus 로고
    • Bounds for the fundamental solution of a parabolic equation
    • D. G. ARONSON, Bounds for the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc. 73 (1967), 890-896.
    • (1967) Bull. Amer. Math. Soc. , vol.73 , pp. 890-896
    • Aronson, D.G.1
  • 3
    • 0003131889 scopus 로고
    • Local behavior of solutions of quasilinear parabolic equations
    • D. G. ARONSON - J. SERRIN, Local behavior of solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal. 25 (1967), 81-122.
    • (1967) Arch. Ration. Mech. Anal. , vol.25 , pp. 81-122
    • Aronson, D.G.1    Serrin, J.2
  • 4
    • 84887526788 scopus 로고    scopus 로고
    • Pointwise local estimates and Gaussian upper bounds for a class of uniformly subelliptic ultraparabolic operators
    • to appear
    • C. CINTI - S. POLIDORO, Pointwise local estimates and Gaussian upper bounds for a class of uniformly subelliptic ultraparabolic operators, J. Math. Anal. Appl. (2007), to appear.
    • (2007) J. Math. Anal. Appl.
    • Cinti, C.1    Polidoro, S.2
  • 5
    • 84878253417 scopus 로고
    • R égularité analytique d'opé rateurs dégénérés
    • M. DERRIDJ - C. ZUILY, R égularité analytique d'opé rateurs dégénérés. C. R. Acad. Sci. Paris Sér. A-B 273 (1971), A720-A723.
    • (1971) C. R. Acad. Sci. Paris Sér. A-B , vol.273
    • Derridj, M.1    Zuily, C.2
  • 6
    • 84881102143 scopus 로고    scopus 로고
    • Schauder estimates, harnack inequality and Gaussian lower bound for kolmogorov type operators in non-divergence form
    • M. DI FRANCESCO - S. POLIDORO, Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov type operators in non-divergence form. Adv. Differential Equations 11 (2006), 1261-1320.
    • (2006) Adv. Differential Equations , vol.11 , pp. 1261-1320
    • Di Francesco, M.1    Polidoro, S.2
  • 7
    • 15244346736 scopus 로고
    • Hypoelliptic second order differential equations
    • L. HÖRMANDER, Hypoelliptic second order differential equations. Acta Math. 119 (1967), 147-171.
    • (1967) Acta Math. , vol.119 , pp. 147-171
    • Hörmander, L.1
  • 8
    • 0001178379 scopus 로고
    • Estimates for the heat kernel for a sum of squares of vector fields
    • D. S. JERISON - A. SÁNCHEZ-CALLE, Estimates for the heat kernel for a sum of squares of vector fields. Indiana Univ. Math. J. 35 (1986), 835-854.
    • (1986) Indiana Univ. Math. J. , vol.35 , pp. 835-854
    • Jerison, D.S.1    Sánchez-Calle, A.2
  • 9
    • 0002406886 scopus 로고    scopus 로고
    • Geometric control theory
    • Cambridge Univ. Press, Cambridge
    • V. JURDJEVIC, Geometric Control Theory. Cambridge Stud. Adv. Math. 52, Cambridge Univ. Press, Cambridge, 1997.
    • (1997) Cambridge Stud. Adv. Math. , vol.52
    • Jurdjevic, V.1
  • 10
    • 33750156225 scopus 로고    scopus 로고
    • An invariant harnack inequality for a class of hypoelliptic ultraparabolic equations
    • A. E. KOGOJ - E. LANCONELLI, An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations. Mediterr. J. Math. 1 (2004), 51-80.
    • (2004) Mediterr. J. Math. , vol.1 , pp. 51-80
    • Kogoj, A.E.1    Lanconelli, E.2
  • 11
    • 34848862007 scopus 로고    scopus 로고
    • Link of groups and homogeneous hörmander operators
    • A. E. KOGOJ - E. LANCONELLI, Link of groups and homogeneous Hörmander operators. Proc. Amer. Math. Soc. 135 (2007), 2019-2030.
    • (2007) Proc. Amer. Math. Soc. , vol.135 , pp. 2019-2030
    • Kogoj, A.E.1    Lanconelli, E.2
  • 14
    • 84980078895 scopus 로고
    • A harnack inequality for parabolic differential equations
    • J. MOSER, A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math. 17 (1964), 101-134.
    • (1964) Comm. Pure Appl. Math. , vol.17 , pp. 101-134
    • Moser, J.1
  • 15
    • 0041862120 scopus 로고
    • Balls and metrics defined by vector fields. I. Basic properties
    • A. NAGEL - E. M. STEIN - S. WAINGER, Balls and metrics defined by vector fields. I. Basic properties. Acta Math. 155 (1985), 103-147.
    • (1985) Acta Math. , vol.155 , pp. 103-147
    • Nagel, A.1    Stein, E.M.2    Wainger, S.3
  • 17
    • 33750177062 scopus 로고    scopus 로고
    • Harnack inequalities and Gaussian estimates for a class of hypoelliptic operators
    • DOI 10.1090/S0002-9947-06-04050-5, PII S0002994706040505
    • A. PASCUCCI - S. POLIDORO, Harnack inequalities and Gaussian estimates for a class of hypoelliptic operators. Trans. Amer. Math. Soc. 358 (2006), 4873-4893. (Pubitemid 44598802)
    • (2006) Transactions of the American Mathematical Society , vol.358 , Issue.11 , pp. 4873-4893
    • Pascucci, A.1    Polidoro, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.