메뉴 건너뛰기




Volumn 2013, Issue 1, 2013, Pages

Bayesian group sparse learning for music source separation

Author keywords

Bayesian sparse learning; Group sparsity; Nonnegative matrix factorization; Signal reconstruction; Single channel source separation; Subspace approach

Indexed keywords

BAYESIAN; GROUP SPARSITIES; NONNEGATIVE MATRIX FACTORIZATION; SINGLE-CHANNEL; SUBSPACE APPROACH;

EID: 84887072585     PISSN: 16874714     EISSN: 16874722     Source Type: Journal    
DOI: 10.1186/1687-4722-2013-18     Document Type: Article
Times cited : (10)

References (34)
  • 2
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • 2248024 1222.68218
    • Hoyer PO: Non-negative matrix factorization with sparseness constraints. J. Mach. Lear. Res 2004, 5:1457-1469.
    • (2004) J. Mach. Lear. Res , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 4
    • 33847655586 scopus 로고    scopus 로고
    • A generalized divergence measure for nonnegative matrix factorization
    • 2295366 1127.68081 10.1162/neco.2007.19.3.780
    • Kompass R: A generalized divergence measure for nonnegative matrix factorization. Neural Comput 2007, 19:780-791.
    • (2007) Neural Comput , vol.19 , pp. 780-791
    • Kompass, R.1
  • 5
    • 74549174193 scopus 로고    scopus 로고
    • Semi-supervised nonnegative matrix factorization
    • 10.1109/LSP.2009.2027163
    • Lee H, Yoo J, Choi S: Semi-supervised nonnegative matrix factorization. IEEE Signal Process. Lett 2010,17(1):4-7.
    • (2010) IEEE Signal Process. Lett , vol.17 , Issue.1 , pp. 4-7
    • Lee, H.1    Yoo, J.2    Choi, S.3
  • 6
    • 0038460232 scopus 로고    scopus 로고
    • Algorithms for nonnegative independent component analysis
    • 10.1109/TNN.2003.810616
    • Plumbley MD: Algorithms for nonnegative independent component analysis. IEEE Trans. Neural Netw 2003,14(3):534-543.
    • (2003) IEEE Trans. Neural Netw , vol.14 , Issue.3 , pp. 534-543
    • Plumbley, M.D.1
  • 9
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian Learning and the Relevance Vector Machine
    • DOI 10.1162/15324430152748236
    • Tipping ME: Sparse Bayesian learning and the relevance vector machine. J Mach. Learn. Res 2001, 1:211-244. (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 10
    • 72949095917 scopus 로고    scopus 로고
    • Bayesian compressive sensing using Laplace priors
    • 2729957 10.1109/TIP.2009.2032894
    • Babacan SD, Molina R, Katsaggelos AK: Bayesian compressive sensing using Laplace priors. IEEE Trans. Image Process 2010,19(1):53-63.
    • (2010) IEEE Trans. Image Process , vol.19 , Issue.1 , pp. 53-63
    • Babacan, S.D.1    Molina, R.2    Katsaggelos, A.K.3
  • 15
    • 33750402597 scopus 로고    scopus 로고
    • Separation of non-negative mixture of non-negative sources using a Bayesian approach and MCMC sampling
    • DOI 10.1109/TSP.2006.880310
    • Moussaoui S, Brie D: Mohammad-A Djafari, C Carteret, Separation of non-negative mixture of non-negative sources using a Bayesian approach and MCMC sampling. IEEE Trans. Signal Process 2006,54(11):4133-4145. (Pubitemid 44637747)
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 4133-4145
    • Moussaoui, S.1    Brie, D.2    Mohammad-Djafari, A.3    Carteret, C.4
  • 17
    • 34347404627 scopus 로고    scopus 로고
    • A Bayesian approach for blind separation of sparse sources
    • 10.1109/TSA.2005.858523
    • Fevotte C, Godsill SJ: A Bayesian approach for blind separation of sparse sources. IEEE Trans. Audio, Speech, Language Process 2006,14(6):2174-2188.
    • (2006) IEEE Trans. Audio, Speech, Language Process , vol.14 , Issue.6 , pp. 2174-2188
    • Fevotte, C.1    Godsill, S.J.2
  • 18
    • 64849117345 scopus 로고    scopus 로고
    • Unsupervised single-channel music source separation by average harmonic structure modeling
    • 10.1109/TASL.2008.919073
    • Duan Z, Zhang Y, Zhang C, Shi Z: Unsupervised single-channel music source separation by average harmonic structure modeling. IEEE Trans. on Audio, Speech, Language Process 2008,16(4):766-778.
    • (2008) IEEE Trans. on Audio, Speech, Language Process , vol.16 , Issue.4 , pp. 766-778
    • Duan, Z.1    Zhang, Y.2    Zhang, C.3    Shi, Z.4
  • 22
    • 80052990319 scopus 로고    scopus 로고
    • Nonnegative matrix partial co-factorization for spectral and temporal drum source separation
    • 10.1109/JSTSP.2011.2158803
    • Kim M, Yoo J, Kang K, Choi S: Nonnegative matrix partial co-factorization for spectral and temporal drum source separation. IEEE J. Sel. Top. Signal Process 2011,5(6):1192-1204.
    • (2011) IEEE J. Sel. Top. Signal Process , vol.5 , Issue.6 , pp. 1192-1204
    • Kim, M.1    Yoo, J.2    Kang, K.3    Choi, S.4
  • 32
    • 32344446687 scopus 로고
    • Understanding the Metropolis-Hastings Algorithm
    • Chib S, Greenberg E: Understanding the Metropolis-Hastings algorithm. Am. Statistician 1995,49(4):327-335. (Pubitemid 126008969)
    • (1995) American Statistician , vol.49 , Issue.4 , pp. 327-335
    • Chib, S.1    Greenberg, E.2
  • 33
    • 84884926655 scopus 로고    scopus 로고
    • Nonstationary source separation using sequential and variational Bayesian learning
    • 10.1109/TNNLS.2013.2242090
    • Chien J-T, Hsieh H. -L: Nonstationary source separation using sequential and variational Bayesian learning. IEEE Trans. Neural Netw. Learn. Syst 2013,24(5):681-694.
    • (2013) IEEE Trans. Neural Netw. Learn. Syst , vol.24 , Issue.5 , pp. 681-694
    • Chien, J.-T.1    Hsieh, H.-L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.