메뉴 건너뛰기




Volumn , Issue , 2007, Pages 241-252

Synergies between evolutionary and neural computation

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL INFORMATION PROCESSING; NEURAL COMPUTATIONS; RECENT TRENDS; TOPOLOGY OPTIMISATION; TURBOMACHINERY COMPONENTS;

EID: 84886998830     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (3)

References (75)
  • 1
    • 0036275180 scopus 로고    scopus 로고
    • An evolutionary artificial neural networks approach for breast cancer diagnosis
    • H. A. Abbass. An evolutionary artificial neural networks approach for breast cancer diagnosis. Artificial Intelligence in Medicine, 25(3):265-281, 2002.
    • (2002) Artificial Intelligence In Medicine , vol.25 , Issue.3 , pp. 265-281
    • Abbass, H.A.1
  • 2
    • 0141542628 scopus 로고    scopus 로고
    • Speeding up backpropagation using multiobjective evolutionary algorithms
    • H. A. Abbass. Speeding up backpropagation using multiobjective evolutionary algorithms. Neural Computation, 15(11):2705-2726, 2003.
    • (2003) Neural Computation , vol.15 , Issue.11 , pp. 2705-2726
    • Abbass, H.A.1
  • 3
    • 0033485371 scopus 로고    scopus 로고
    • A distributed model of the saccade system: Simulations of temporally perturbed saccades using position and velocity feedback
    • K. Arai, S. Das, E. L. Keller, and E. Aiyoshi. A distributed model of the saccade system: simulations of temporally perturbed saccades using position and velocity feedback. Neural Networks, 12:1359-1375, 1999.
    • (1999) Neural Networks , vol.12 , pp. 1359-1375
    • Arai, K.1    Das, S.2    Keller, E.L.3    Aiyoshi, E.4
  • 4
    • 0142086919 scopus 로고    scopus 로고
    • Towards a neurally-inspired computer architecture
    • M. A. Arbib. Towards a neurally-inspired computer architecture. Natural Computing, 2(1):1-46, 2003.
    • (2003) Natural Computing , vol.2 , Issue.1 , pp. 1-46
    • Arbib, M.A.1
  • 6
    • 0038355078 scopus 로고    scopus 로고
    • Evolving efficient learning algorithms for binary mappings
    • J. A. Bullinaria. Evolving efficient learning algorithms for binary mappings. Neural Networks, 16:793-800, 2003.
    • (2003) Neural Networks , vol.16 , pp. 793-800
    • Bullinaria, J.A.1
  • 9
    • 0033359368 scopus 로고    scopus 로고
    • Evolution, neural networks, games, and intelligence
    • K. Chellapilla and D. B. Fogel. Evolution, neural networks, games, and intelligence. Proceedings of the IEEE, 87(9):1471-1496, 1999.
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1471-1496
    • Chellapilla, K.1    Fogel, D.B.2
  • 11
    • 0031212567 scopus 로고    scopus 로고
    • A closer look at drawbacks of minimizing weighted sums of objectives for pareto set generation in multicriteria optimization problems
    • I. Das and J. E. Dennis. A closer look at drawbacks of minimizing weighted sums of objectives for pareto set generation in multicriteria optimization problems. Structural Optimization, 14(1):63-69, 1997.
    • (1997) Structural Optimization , vol.14 , Issue.1 , pp. 63-69
    • Das, I.1    Dennis, J.E.2
  • 18
    • 24344437091 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple SVM parameters
    • In M. Verleysen, editor, (ESANN 2004), Evere, Belgium: d-side publications
    • F. Friedrichs and C. Igel. Evolutionary tuning of multiple SVM parameters. In M. Verleysen, editor, 12th European Symposium on Artificial Neural Networks (ESANN 2004), pages 519-524. Evere, Belgium: d-side publications, 2004.
    • (2004) 12th European Symposium On Artificial Neural Networks , pp. 519-524
    • Friedrichs, F.1    Igel, C.2
  • 19
    • 0344235442 scopus 로고    scopus 로고
    • Feature selection for support vector machines by means of genetic algorithms
    • 15th IEEE International Conference on Tools with AI (ICTAI 2003)
    • H. Fröhlich, O. Chapelle, and B. Schölkopf. Feature selection for support vector machines by means of genetic algorithms. In 15th IEEE International Conference on Tools with AI (ICTAI 2003), pages 142-148. IEEE Computer Society, 2003.
    • (2003) IEEE Computer Society , pp. 142-148
    • Fröhlich, H.1    Chapelle, O.2    Schölkopf, B.3
  • 20
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 39:139-202, 1980.
    • (1980) Biological Cybernetics , vol.39 , pp. 139-202
    • Fukushima, K.1
  • 22
    • 84886994678 scopus 로고    scopus 로고
    • Efficient evolutionary optimization using individualbased evolution control and neural networks: A comparative study
    • (ESANN 2005)
    • L. Graening, Y. Jin, and B. Sendhoff. Efficient evolutionary optimization using individualbased evolution control and neural networks: A comparative study. In 13th European Symposium on Artificial Neural Networks (ESANN 2005), 2005.
    • (2005) 13th European Symposium On Artificial Neural Networks
    • Graening, L.1    Jin, Y.2    Sendhoff, B.3
  • 24
    • 84977058391 scopus 로고
    • Automatic definition of modular neural networks
    • F. Gruau. Automatic definition of modular neural networks. Adaptive Behavior, 3(2):151-183, 1995.
    • (1995) Adaptive Behavior , vol.3 , Issue.2 , pp. 151-183
    • Gruau, F.1
  • 26
    • 0036768801 scopus 로고    scopus 로고
    • Task-dependent evolution of modularity in neural networks
    • M. Hüsken, C. Igel, and M. Toussaint. Task-dependent evolution of modularity in neural networks. Connection Science, 14(3):219-229, 2002.
    • (2002) Connection Science , vol.14 , Issue.3 , pp. 219-229
    • Hüsken, M.1    Igel, C.2    Toussaint, M.3
  • 27
    • 21144448571 scopus 로고    scopus 로고
    • Structure optimization of neural networks for aerodynamic optimization
    • M. Hüsken, Y. Jin, and B. Sendhoff. Structure optimization of neural networks for aerodynamic optimization. Soft Computing, 9(1):21-28, 2005.
    • (2005) Soft Computing , vol.9 , Issue.1 , pp. 21-28
    • Hüsken, M.1    Jin, Y.2    Sendhoff, B.3
  • 28
    • 84901411269 scopus 로고    scopus 로고
    • Neuroevolution for reinforcement learning using evolution strategies
    • In R. Sarker et al., editors, (CEC 2003), IEEE Press
    • C. Igel. Neuroevolution for reinforcement learning using evolution strategies. In R. Sarker et al., editors, Congress on Evolutionary Computation (CEC 2003), volume 4, pages 2588-2595. IEEE Press, 2003.
    • (2003) Congress On Evolutionary Computation , vol.4 , pp. 2588-2595
    • Igel, C.1
  • 29
    • 24344435631 scopus 로고    scopus 로고
    • Multiobjective model selection for support vector machines
    • In C. A. Coello Coello et al., editors, (EMO 2005), of LNAI, Springer- Verlag
    • C. Igel. Multiobjective model selection for support vector machines. In C. A. Coello Coello et al., editors, Proceedings of the Third International Conference on Evolutionary Multi- Criterion Optimization (EMO 2005), volume 3410 of LNAI, pages 534-546. Springer- Verlag, 2005.
    • (2005) Proceedings of the Third International Conference On Evolutionary Multi- Criterion Optimization , vol.3410 , pp. 534-546
    • Igel, C.1
  • 30
    • 0242383449 scopus 로고    scopus 로고
    • Operator adaptation in evolutionary computation and its application to structure optimization of neural networks
    • C. Igel and M. Kreutz. Operator adaptation in evolutionary computation and its application to structure optimization of neural networks. Neurocomputing, 55(1-2):347-361, 2003.
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 347-361
    • Igel, C.1    Kreutz, M.2
  • 31
    • 0036464942 scopus 로고    scopus 로고
    • Effects of phenotypic redundancy in structure optimization
    • C. Igel and P. Stagge. Effects of phenotypic redundancy in structure optimization. IEEE Transactions on Evolutionary Computation, 6(1):74-85, 2002.
    • (2002) IEEE Transactions On Evolutionary Computation , vol.6 , Issue.1 , pp. 74-85
    • Igel, C.1    Stagge, P.2
  • 32
    • 0036068286 scopus 로고    scopus 로고
    • Evolving field models for inhibition effects in early vision
    • C. Igel, W. von Seelen, W. Erlhagen, and D. Jancke. Evolving field models for inhibition effects in early vision. Neurocomputing, 44-46(C):467-472, 2002.
    • (2002) Neurocomputing , vol.44-46 , Issue.C , pp. 467-472
    • Igel, C.1    von Seelen, W.2    Erlhagen, W.3    Jancke, D.4
  • 34
    • 24944530101 scopus 로고    scopus 로고
    • Rigorous runtime analysis of the (1+1) ES: 1/5-rule and ellipsoidal fitness landscapes
    • LNCS. Springer- Verlag
    • J. Jäagersküpper. Rigorous runtime analysis of the (1+1) ES: 1/5-rule and ellipsoidal fitness landscapes. In Foundations of Genetic Algorithms (FOGA VIII), LNCS. Springer- Verlag, 2005.
    • (2005) Foundations of Genetic Algorithms (FOGA VIII)
    • Jäagersküpper, J.1
  • 35
    • 21144433756 scopus 로고    scopus 로고
    • A comprehensive survey of fitness approximation in evolutionary computation
    • Y. Jin. A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing, 9(1):3-12, 2005.
    • (2005) Soft Computing , vol.9 , Issue.1 , pp. 3-12
    • Jin, Y.1
  • 36
    • 4344623228 scopus 로고    scopus 로고
    • Neural network regularization and ensembling using multi-objective evolutionary algorithms
    • IEEE Press
    • Y. Jin, T. Okabe, and B. Sendhoff. Neural network regularization and ensembling using multi-objective evolutionary algorithms. In Congress on Evolutionary Computation (CEC'04), pages 1-8. IEEE Press, 2004.
    • (2004) Congress On Evolutionary Computation (CEC'04) , pp. 1-8
    • Jin, Y.1    Okabe, T.2    Sendhoff, B.3
  • 37
    • 0036808455 scopus 로고    scopus 로고
    • A framework for evolutionary optimization with approximate fitness functions
    • Y. Jin, M. Olhofer, and B. Sendhoff. A framework for evolutionary optimization with approximate fitness functions. IEEE Transactions on Evolutionary Computation, 6(5):481-494, 2002.
    • (2002) IEEE Transactions On Evolutionary Computation , vol.6 , Issue.5 , pp. 481-494
    • Jin, Y.1    Olhofer, M.2    Sendhoff, B.3
  • 38
    • 35048830447 scopus 로고    scopus 로고
    • Reducing fitness evaluations using clustering techniques and neural network ensembles
    • In K. Deb et al., editors, of, LNCS, Springer
    • Y. Jin and B. Sendhoff. Reducing fitness evaluations using clustering techniques and neural network ensembles. In K. Deb et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference - GECCO, volume 1 of LNCS, pages 688-699. Springer, 2004.
    • (2004) Proceedings of the Genetic and Evolutionary Computation Conference - GECCO , vol.1 , pp. 688-699
    • Jin, Y.1    Sendhoff, B.2
  • 39
    • 35048820555 scopus 로고    scopus 로고
    • Analysis of proteomic pattern data for cancer detection
    • In G. R. Raidl et al., editors, LNCS, Springer-Verlag
    • K. Jong, E. Marchiori, and A. van der Vaart. Analysis of proteomic pattern data for cancer detection. In G. R. Raidl et al., editors, Applications of Evolutionary Computing, number 3005 in LNCS, pages 41-51. Springer-Verlag, 2004.
    • (2004) Applications of Evolutionary Computing , vol.3005 , pp. 41-51
    • Jong, K.1    Marchiori, E.2    van der Vaart, A.3
  • 40
    • 0021042386 scopus 로고
    • Computational modeling of evolutionary learning processes in the brain
    • R. R. Kampfner and M. Conrad. Computational modeling of evolutionary learning processes in the brain. Bulletin of Mathematical Biology, 45(6):931-968, 1983.
    • (1983) Bulletin of Mathematical Biology , vol.45 , Issue.6 , pp. 931-968
    • Kampfner, R.R.1    Conrad, M.2
  • 41
    • 84887011679 scopus 로고    scopus 로고
    • Efficient reinforcement learning through evolutionary acquisition of neural topologies
    • (ESANN 2005)
    • Y. Kassahun and G. Sommer. Efficient reinforcement learning through evolutionary acquisition of neural topologies. In 13th European Symposium on Artificial Neural Networks (ESANN 2005), 2005.
    • (2005) 13th European Symposium On Artificial Neural Networks
    • Kassahun, Y.1    Sommer, G.2
  • 42
    • 0002933170 scopus 로고
    • Designing neural networks using genetic algorithms with graph generation system
    • H. Kitano. Designing neural networks using genetic algorithms with graph generation system. Complex Systems, 4:461-476, 1990.
    • (1990) Complex Systems , vol.4 , pp. 461-476
    • Kitano, H.1
  • 44
    • 0034739052 scopus 로고    scopus 로고
    • Automatic design and manufacture of robotic lifeforms
    • H. Lipson and J. B. Pollack. Automatic design and manufacture of robotic lifeforms. Nature, 406:974-978, 2000.
    • (2000) Nature , vol.406 , pp. 974-978
    • Lipson, H.1    Pollack, J.B.2
  • 46
    • 0031557885 scopus 로고    scopus 로고
    • What exactly are genomes, genotypes and phenotypes? And what about phenomes?
    • M. Mahner and M. Kary. What exactly are genomes, genotypes and phenotypes? And what about phenomes? Journal of Theoretical Biology, 186(1):55-63, 1997.
    • (1997) Journal of Theoretical Biology , vol.186 , Issue.1 , pp. 55-63
    • Mahner, M.1    Kary, M.2
  • 47
    • 4344594113 scopus 로고    scopus 로고
    • A decision making framework for game playing using evolutionary optimization and learning
    • In Y. Shi, editor, IEEE Press
    • A. Mark, H. Wersing, and B. Sendhoff. A decision making framework for game playing using evolutionary optimization and learning. In Y. Shi, editor, Congress on Evolutionary Computation (CEC), volume 1, pages 373-380. IEEE Press, 2004.
    • (2004) Congress On Evolutionary Computation (CEC) , vol.1 , pp. 373-380
    • Mark, A.1    Wersing, H.2    Sendhoff, B.3
  • 51
    • 15844370967 scopus 로고    scopus 로고
    • Evolution and learning in neural networks
    • In M. A. Arbib, editor, MIT Press, 2 edition
    • S. Nolfi. Evolution and learning in neural networks. In M. A. Arbib, editor, The Handbook of Brain Theory and Neural Networks, pages 415-418. MIT Press, 2 edition, 2002.
    • (2002) The Handbook of Brain Theory and Neural Networks , pp. 415-418
    • Nolfi, S.1
  • 52
    • 0003655029 scopus 로고    scopus 로고
    • Evolutionary Robotics: The Biology, Intelligence, and Techno logy of Self-Organizing Machines
    • MIT Press
    • S. Nolfi and D. Floreano. Evolutionary Robotics: The Biology, Intelligence, and Techno logy of Self-Organizing Machines. Intelligent Robotics and Autonomous Agents. MIT Press, 2000.
    • (2000) Intelligent Robotics and Autonomous Agents
    • Nolfi, S.1    Floreano, D.2
  • 53
    • 20444408205 scopus 로고    scopus 로고
    • Staged training of neocognitron by evolutionary algorithms
    • In P. J. Angeline et al., editors, IEEE Press
    • Z. Pan, T. Sabisch, R. Adams, and H. Bolouri. Staged training of neocognitron by evolutionary algorithms. In P. J. Angeline et al., editors, Proceedings of the Congress on Evolutionary Computation, volume 3, pages 1965-1972. IEEE Press, 1999.
    • (1999) Proceedings of the Congress On Evolutionary Computation , vol.3 , pp. 1965-1972
    • Pan, Z.1    Sabisch, T.2    Adams, R.3    Bolouri, H.4
  • 54
    • 0033308511 scopus 로고    scopus 로고
    • Optimization of large-scale 3D trusses using evolution strategies and neural networks
    • M. Papadrakakis, N. Lagaros, and Y. Tsompanakis. Optimization of large-scale 3D trusses using evolution strategies and neural networks. International Journal of Space Structures, 14(3):211-223, 1999.
    • (1999) International Journal of Space Structures , vol.14 , Issue.3 , pp. 211-223
    • Papadrakakis, M.1    Lagaros, N.2    Tsompanakis, Y.3
  • 55
    • 0035673951 scopus 로고    scopus 로고
    • Robot control and the evolution of modular neurodynamics
    • F. Pasemann, U. Steinmetz, M. Hülse, and B. Lara. Robot control and the evolution of modular neurodynamics. Theory in Biosciences, 120(3-4):311-326, 2001.
    • (2001) Theory In Biosciences , vol.120 , Issue.3-4 , pp. 311-326
    • Pasemann, F.1    Steinmetz, U.2    Hülse, M.3    Lara, B.4
  • 57
    • 0032819422 scopus 로고    scopus 로고
    • Turbomachinery blade design using a Navier-Stokes solver and artificial neural network
    • S. Pierret. Turbomachinery blade design using a Navier-Stokes solver and artificial neural network. ASME Journal of Turbomachinery, 121(3):326-332, 1999.
    • (1999) ASME Journal of Turbomachinery , vol.121 , Issue.3 , pp. 326-332
    • Pierret, S.1
  • 58
    • 0034664164 scopus 로고    scopus 로고
    • On the design of neural networks in the brain by genetic evolution
    • E. T. Rolls and S. M. Stringer. On the design of neural networks in the brain by genetic evolution. Progress in Neurobiology, 6(61):557-579, 2000.
    • (2000) Progress In Neurobiology , vol.6 , Issue.61 , pp. 557-579
    • Rolls, E.T.1    Stringer, S.M.2
  • 61
    • 35048901563 scopus 로고    scopus 로고
    • Coupling of evolution and learning to optimize a hierarchical object recognition model
    • In X. Yao et al., editors, Springer Verlag, LNCS
    • G. Schneider, H. Wersing, B. Sendhoff, and E. Körner. Coupling of evolution and learning to optimize a hierarchical object recognition model. In X. Yao et al., editors, Parallel Problem Solving from Nature (PPSN), LNCS, pages 662-671. Springer Verlag, 2004.
    • (2004) Parallel Problem Solving From Nature (PPSN) , pp. 662-671
    • Schneider, G.1    Wersing, H.2    Sendhoff, B.3    Körner, E.4
  • 65
    • 0033318210 scopus 로고    scopus 로고
    • A model for the dynamic interaction between evolution and learning
    • B. Sendhoff and M. Kreutz. A model for the dynamic interaction between evolution and learning. Neural Processing Letters, 10(3):181-193, 1999.
    • (1999) Neural Processing Letters , vol.10 , Issue.3 , pp. 181-193
    • Sendhoff, B.1    Kreutz, M.2
  • 66
    • 0030372023 scopus 로고    scopus 로고
    • On combining artificial neural nets
    • A. J. C. Sharkey. On combining artificial neural nets. Connection Science, 8(3-4):299-313, 1996.
    • (1996) Connection Science , vol.8 , Issue.3-4 , pp. 299-313
    • Sharkey, A.J.C.1
  • 68
    • 0036835735 scopus 로고    scopus 로고
    • Training a single sigmoidal neuron is hard
    • J. Šíma. Training a single sigmoidal neuron is hard. Neural Computation, 14:2709-2728, 2002.
    • (2002) Neural Computation , vol.14 , pp. 2709-2728
    • Šíma, J.1
  • 69
    • 0033953083 scopus 로고    scopus 로고
    • Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices
    • O. Sporns, G. Tononi, and G. M. Edelman. Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebral Cortex, 10(2):127-141, 2000.
    • (2000) Cerebral Cortex , vol.10 , Issue.2 , pp. 127-141
    • Sporns, O.1    Tononi, G.2    Edelman, G.M.3
  • 70
    • 84898939480 scopus 로고    scopus 로고
    • Policy gradient methods for reinforcement learning with function approximation
    • In S. A. Solla et al., editors, MIT Press
    • R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement learning with function approximation. In S. A. Solla et al., editors, Advances in Neural Information Processing Systems 12, pages 1057-1063. MIT Press, 2000.
    • (2000) Advances In Neural Information Processing Systems 12 , pp. 1057-1063
    • Sutton, R.1    McAllester, D.2    Singh, S.3    Mansour, Y.4
  • 71
    • 0030653113 scopus 로고    scopus 로고
    • Application of genetic algorithms to optimise neocognitron network parameters
    • M.-Y. Teo, L.-P. Khoo, and S.-K. Sim. Application of genetic algorithms to optimise neocognitron network parameters. Neural Network World, 7(3):293-304, 1997.
    • (1997) Neural Network World , vol.7 , Issue.3 , pp. 293-304
    • Teo, M.-Y.1    Khoo, L.-P.2    Sim, S.-K.3
  • 72
    • 1642489044 scopus 로고    scopus 로고
    • Evolving controllers for real robots: A survey of the literature
    • J. Walker, S. Garrett, and M. Wilson. Evolving controllers for real robots: A survey of the literature. Adaptive Behavior, 11:179-203, 2003.
    • (2003) Adaptive Behavior , vol.11 , pp. 179-203
    • Walker, J.1    Garrett, S.2    Wilson, M.3
  • 73
    • 0038159929 scopus 로고    scopus 로고
    • Learning optimized features for hierarchical models of invariant recognition
    • H. Wersing and E. Körner. Learning optimized features for hierarchical models of invariant recognition. Neural Computation, 15(7):1559-1588, 2003.
    • (2003) Neural Computation , vol.15 , Issue.7 , pp. 1559-1588
    • Wersing, H.1    Körner, E.2
  • 75
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423-1447, 1999.
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.