메뉴 건너뛰기




Volumn 4304 LNAI, Issue , 2006, Pages 305-311

Using attack-specific feature subsets for network intrusion detection

Author keywords

Class specific learning; Data mining; Feature selection; Genetic algorithm; Network intrusion detection

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; GENETIC ALGORITHMS; INTRUSION DETECTION; LEARNING ALGORITHMS; SET THEORY;

EID: 84886409746     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11941439_34     Document Type: Conference Paper
Times cited : (4)

References (14)
  • 1
    • 19944364877 scopus 로고    scopus 로고
    • Feature deduction and ensemble design of intrusion detection systems
    • Chebrolu, S., A. Abraham, J. Thomas, 2005, Feature deduction and ensemble design of intrusion detection systems, Computers &Security, 24, 295-307
    • (2005) Computers &Security , vol.24 , pp. 295-307
    • Chebrolu, S.1    Abraham, A.2    Thomas, J.3
  • 3
    • 0038330235 scopus 로고    scopus 로고
    • Fusion of multiple classifiers for intrusion detection in computer networks
    • Giacinto, G., F. Roli, L. Didaci, 2003, Fusion of multiple classifiers for intrusion detection in computer networks, Pattern Recognition Letters, 24, 1795-1803.
    • (2003) Pattern Recognition Letters , vol.24 , pp. 1795-1803
    • Giacinto, G.1    Roli, F.2    Didaci, L.3
  • 4
    • 0242637092 scopus 로고    scopus 로고
    • Detecting intrusion with rule-based integration of multiple models
    • Han, S. J., S-B., Cho, 2003, Detecting intrusion with rule-based integration of multiple models, Computers &Security, 22, 613-623.
    • (2003) Computers &Security , vol.22 , pp. 613-623
    • Han, S.J.1    Cho, S.-B.2
  • 5
    • 15744370034 scopus 로고    scopus 로고
    • A Taxonomy of network and computer attacks
    • Hansman, S. Hunt, R., 2005, A Taxonomy of network and computer attacks, Computers &Security, 24, 31-43.
    • (2005) Computers &Security , vol.24 , pp. 31-43
    • Hansman, S.1    Hunt, R.2
  • 6
    • 0034171891 scopus 로고    scopus 로고
    • Identifying the impact of decision variables for nonlinear classification
    • Kim, S. H., Shin, S. W., 2000, Identifying the impact of decision variables for nonlinear classification, Expert Systems With Applications, 18, 201-214.
    • (2000) Expert Systems with Applications , vol.18 , pp. 201-214
    • Kim, S.H.1    Shin, S.W.2
  • 9
    • 85019691440 scopus 로고    scopus 로고
    • Testing intrusion detection systems: A critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory
    • McHugh, J. 2000. Testing intrusion detection systems: A critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory. ACM Trans. Information System Security 3 (4), 262-294.
    • (2000) ACM Trans. Information System Security , vol.3 , Issue.4 , pp. 262-294
    • McHugh, J.1
  • 11
    • 0003065528 scopus 로고
    • Further research on feature selection and classification using genetic algorithms
    • Punch, W. F., Goodman, E. D., et al., 1993, Further research on feature selection and classification using genetic algorithms, Int. Conf. on Genetic Algorithms, 557-564.
    • (1993) Int. Conf. on Genetic Algorithms , pp. 557-564
    • Punch, W.F.1    Goodman, E.D.2
  • 13
    • 85012240666 scopus 로고    scopus 로고
    • Data mining-based intrusion detectors: An overview of the columbia ids project
    • Stolfo, S., W. Lee, P. K. Chan, W. Fan, and E. Eskin. 2001, Data mining-based intrusion detectors: An overview of the Columbia IDS project, ACM SIGMOD Record, 30 (4), 5-14.
    • (2001) ACM SIGMOD Record , vol.30 , Issue.4 , pp. 5-14
    • Stolfo, S.1    Lee, W.2    Chan, P.K.3    Fan, W.4    Eskin, E.5
  • 14
    • 15944375471 scopus 로고    scopus 로고
    • A Intrusion detection using hierarchical neural networks
    • Zhang, C., J. Jiang, M. Kamel, 2005, A Intrusion detection using hierarchical neural networks, Pattern Recognition Letters, 779-791.
    • (2005) Pattern Recognition Letters , pp. 779-791
    • Zhang, C.1    Jiang, J.2    Kamel, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.