메뉴 건너뛰기




Volumn 3, Issue , 2013, Pages

Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84886258294     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep03002     Document Type: Article
Times cited : (214)

References (39)
  • 3
    • 70450140691 scopus 로고    scopus 로고
    • New materials and new confgurations for advanced electrochemical capacitors
    • Naoi, K. & Simon, P. New materials and new confgurations for advanced electrochemical capacitors. Electrochem. Soc. Interface 17, 34-37 (2008).
    • (2008) Electrochem. Soc. Interface , vol.17 , pp. 34-37
    • Naoi, K.1    Simon, P.2
  • 5
    • 84867654139 scopus 로고    scopus 로고
    • Second generation 'nanohybrid supercapacitor': Evolution of capacitive energy storage devices
    • Naoi, K., Ishimoto, S., Miyamoto, J.-i. & Naoi, W. Second generation 'nanohybrid supercapacitor': Evolution of capacitive energy storage devices. Energy Environ. Sci. 5, 9363-9373 (2012).
    • (2012) Energy Environ. Sci. , vol.5 , pp. 9363-9373
    • Naoi, K.1    Ishimoto, S.2    Miyamoto, J.-I.3    Naoi, W.4
  • 7
    • 79952127440 scopus 로고    scopus 로고
    • Batteries for electric and hybrid-electric vehicles
    • Cairns, E. J. & Albertus, P. Batteries for Electric and Hybrid-Electric Vehicles. Annu. Rev. Chem. Biomol. Eng. 1, 299-320 (2010).
    • (2010) Annu. Rev. Chem. Biomol. Eng. , vol.1 , pp. 299-320
    • Cairns, E.J.1    Albertus, P.2
  • 8
    • 84873382559 scopus 로고    scopus 로고
    • LiMnPO4 -Anext generation cathodematerial for lithium-ion batteries
    • Aravindan, V., Gnanaraj, J., Lee, Y.-S. & Madhavi, S. LiMnPO4 -Anext generation cathodematerial for lithium-ion batteries. J. Mater. Chem. A 1, 3518-3539 (2013).
    • (2013) J. Mater. Chem. A , vol.1 , pp. 3518-3539
    • Aravindan, V.1    Gnanaraj, J.2    Lee, Y.-S.3    Madhavi, S.4
  • 9
    • 25144464052 scopus 로고    scopus 로고
    • A hybrid electrochemical supercapacitor based on a 5 V Li-ion battery cathode and active carbon
    • DOI 10.1149/1.1960007
    • Li, H., Cheng, L. & Xia, Y. A hybrid electrochemical supercapacitor based on a 5 V Li-ion battery cathode and active carbon. Electrochem. Solid-State Lett. 8, A433-A436 (2005). (Pubitemid 41336829)
    • (2005) Electrochemical and Solid-State Letters , vol.8 , Issue.9
    • Li, H.1    Cheng, L.2    Xia, Y.3
  • 10
    • 67349142182 scopus 로고    scopus 로고
    • Electrochemical performance of LiNi0.5Mn1.5O4 prepared by improved solid state method as cathode in hybrid supercapacitor
    • Wu, H., Rao, C. V. & Rambabu, B. Electrochemical performance of LiNi0.5Mn1.5O4 prepared by improved solid state method as cathode in hybrid supercapacitor. Mater. Chem. Phys. 116, 532-535 (2009).
    • (2009) Mater. Chem. Phys. , vol.116 , pp. 532-535
    • Wu, H.1    Rao, C.V.2    Rambabu, B.3
  • 11
    • 36248938301 scopus 로고    scopus 로고
    • A novel concept of hybrid capacitor based on manganese oxide materials
    • Ma, S. B. et al. A novel concept of hybrid capacitor based on manganese oxide materials. Electrochem. Commun. 9, 2807-2811 (2007).
    • (2007) Electrochem. Commun. , vol.9 , pp. 2807-2811
    • Ma, S.B.1
  • 12
    • 67650034664 scopus 로고    scopus 로고
    • LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: Superior cathode material for electrochemical energy-storage devices
    • Wu, X. L., Jiang, L. Y., Cao, F. F., Guo, Y. G. & Wan, L. J. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: Superior cathode material for electrochemical energy-storage devices. Adv. Mater. 21, 2710-2714 (2009).
    • (2009) Adv. Mater. , vol.21 , pp. 2710-2714
    • Wu, X.L.1    Jiang, L.Y.2    Cao, F.F.3    Guo, Y.G.4    Wan, L.J.5
  • 14
    • 75749148702 scopus 로고    scopus 로고
    • Electrochemical performance of carbon-coated lithium manganese silicate for asymmetric hybrid supercapacitors
    • Karthikeyan, K. et al. Electrochemical performance of carbon-coated lithium manganese silicate for asymmetric hybrid supercapacitors. J. Power Sources 195, 3761-3764 (2010).
    • (2010) J. Power Sources , vol.195 , pp. 3761-3764
    • Karthikeyan, K.1
  • 15
    • 77955472823 scopus 로고    scopus 로고
    • A novel asymmetric hybrid supercapacitor based on Li2FeSiO4 and activated carbon electrodes
    • Karthikeyan, K. et al. A novel asymmetric hybrid supercapacitor based on Li2FeSiO4 and activated carbon electrodes. J. Alloys Compd. 504, 224-227 (2010).
    • (2010) J. Alloys Compd. , vol.504 , pp. 224-227
    • Karthikeyan, K.1
  • 17
    • 84863679191 scopus 로고    scopus 로고
    • Fabrication of High Energy-Density Hybrid Supercapacitors Using Electrospun V2O5 Nanofibers with a Self-Supported Carbon Nanotube Network
    • Aravindan, V. et al. Fabrication of High Energy-Density Hybrid Supercapacitors Using Electrospun V2O5 Nanofibers with a Self-Supported Carbon Nanotube Network. ChemPlusChem 77, 570-575 (2012).
    • (2012) ChemPlusChem , vol.77 , pp. 570-575
    • Aravindan, V.1
  • 18
    • 33645137426 scopus 로고    scopus 로고
    • A hybrid nonaqueous electrochemical supercapacitor using nano-sized iron oxyhydroxide and activated carbon
    • Cheng, L., Li, H. Q. & Xia, Y. Y. A hybrid nonaqueous electrochemical supercapacitor using nano-sized iron oxyhydroxide and activated carbon. J. Solid State Electrochem. 10, 405-410 (2006).
    • (2006) J. Solid State Electrochem. , vol.10 , pp. 405-410
    • Cheng, L.1    Li, H.Q.2    Xia, Y.Y.3
  • 19
    • 33745484756 scopus 로고    scopus 로고
    • 12 prepared by molten salt method as an electrode material for hybrid electrochemical supercapacitors
    • DOI 10.1149/1.2204872, 013608JES
    • Cheng, L., Liu, H. J., Zhang, J. J., Xiong, H. M. & Xia, Y. Y. Nanosized Li4Ti5O12 prepared by molten salt method as an electrode material for hybrid electrochemical supercapacitors. J. Electrochem. Soc. 153, A1472-A1477 (2006). (Pubitemid 43958724)
    • (2006) Journal of the Electrochemical Society , vol.153 , Issue.8
    • Cheng, L.1    Liu, H.-J.2    Zhang, J.-J.3    Xiong, H.-M.4    Xia, Y.-Y.5
  • 20
    • 77953135738 scopus 로고    scopus 로고
    • High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors
    • Naoi, K., Ishimoto, S., Isobe, Y. & Aoyagi, S. High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. J. Power Sources 195, 6250-6254 (2010).
    • (2010) J. Power Sources , vol.195 , pp. 6250-6254
    • Naoi, K.1    Ishimoto, S.2    Isobe, Y.3    Aoyagi, S.4
  • 21
    • 79551550278 scopus 로고    scopus 로고
    • Nanohybrid capacitor': The next generation electrochemical capacitors
    • Naoi, K. 'Nanohybrid Capacitor': The Next Generation Electrochemical Capacitors. Fuel Cells 10, 825-833 (2010).
    • (2010) Fuel Cells , vol.10 , pp. 825-833
    • Naoi, K.1
  • 22
    • 33750550451 scopus 로고    scopus 로고
    • 2-B nanowire anode
    • DOI 10.1002/adfm.200500937
    • Wang, Q., Wen, Z. H. & Li, J. H. A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode and a TiO2-B Nanowire Anode. Adv. Funct. Mater. 16, 2141-2146 (2006). (Pubitemid 44672583)
    • (2006) Advanced Functional Materials , vol.16 , Issue.16 , pp. 2141-2146
    • Wang, Q.1    Wen, Z.2    Li, J.3
  • 23
    • 84877273120 scopus 로고    scopus 로고
    • Constructing high energy density non-aqueous Li-ion capacitors using monoclinic TiO2-B nanorods as insertion host
    • Aravindan, V., Shubha, N., Ling, W. C. & Madhavi, S. Constructing high energy density non-aqueous Li-ion capacitors using monoclinic TiO2-B nanorods as insertion host. J. Mater. Chem. A 1, 6145-6151 (2013).
    • (2013) J. Mater. Chem. A , vol.1 , pp. 6145-6151
    • Aravindan, V.1    Shubha, N.2    Ling, W.C.3    Madhavi, S.4
  • 24
    • 79961025151 scopus 로고    scopus 로고
    • Hybrid supercapacitor with nano-TiP2O7 as intercalation electrode
    • Aravindan, V. et al. Hybrid supercapacitor with nano-TiP2O7 as intercalation electrode. J. Power Sources 196, 8850-8854 (2011).
    • (2011) J. Power Sources , vol.196 , pp. 8850-8854
    • Aravindan, V.1
  • 25
    • 84859317342 scopus 로고    scopus 로고
    • Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors
    • Aravindan, V. et al. Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors. Phys. Chem. Chem. Phys. 14, 5808-5814 (2012).
    • (2012) Phys. Chem. Chem. Phys. , vol.14 , pp. 5808-5814
    • Aravindan, V.1
  • 26
    • 78049443930 scopus 로고    scopus 로고
    • Nanocrystalline LiCrTiO4 as anode for asymmetric hybrid supercapacitor
    • Rao, C. V. & Rambabu, B. Nanocrystalline LiCrTiO4 as anode for asymmetric hybrid supercapacitor. Solid State Ionics 181, 839-843 (2010).
    • (2010) Solid State Ionics , vol.181 , pp. 839-843
    • Rao, C.V.1    Rambabu, B.2
  • 27
    • 84863955514 scopus 로고    scopus 로고
    • High power lithium-ion hybrid electrochemical capacitors using spinel LiCrTiO4 as insertion electrode
    • Aravindan, V., Chuiling, W. & Madhavi, S. High power lithium-ion hybrid electrochemical capacitors using spinel LiCrTiO4 as insertion electrode. J. Mater. Chem. 22, 16026-16031 (2012).
    • (2012) J. Mater. Chem. , vol.22 , pp. 16026-16031
    • Aravindan, V.1    Chuiling, W.2    Madhavi, S.3
  • 28
    • 0035051171 scopus 로고    scopus 로고
    • Carbon materials for the electrochemical storage of energy in capacitors
    • DOI 10.1016/S0008-6223(00)00183-4, PII S0008622300001834
    • Frackowiak, E. & Beguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937-950 (2001). (Pubitemid 32303078)
    • (2001) Carbon , vol.39 , Issue.6 , pp. 937-950
    • Frackowiak, E.1    Beguin, F.2
  • 29
    • 84861046829 scopus 로고    scopus 로고
    • Activated graphene as a cathode material for Li-ion hybrid supercapacitors
    • Stoller, M. D. et al. Activated graphene as a cathode material for Li-ion hybrid supercapacitors. Phys. Chem. Chem. Phys. 14, 3388-3391 (2012).
    • (2012) Phys. Chem. Chem. Phys. , vol.14 , pp. 3388-3391
    • Stoller, M.D.1
  • 30
    • 84863785812 scopus 로고    scopus 로고
    • Nanostructured activated carbons from natural precursors for electrical double layer capacitors
    • Wei, L. & Yushin, G. Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1, 552-565 (2012).
    • (2012) Nano Energy , vol.1 , pp. 552-565
    • Wei, L.1    Yushin, G.2
  • 31
    • 12344288046 scopus 로고    scopus 로고
    • Preparation and characterization of composite electrodes of coconut-shell-based activated carbon and hydrous ruthenium oxide for supercapacitors
    • Dandekar, M. S., Arabale, G. & Vijayamohanan, K. Preparation and characterization of composite electrodes of coconut-shell-based activated carbon and hydrous ruthenium oxide for supercapacitors. J. Power Sources 141, 198-203 (2005).
    • (2005) J. Power Sources , vol.141 , pp. 198-203
    • Dandekar, M.S.1    Arabale, G.2    Vijayamohanan, K.3
  • 32
    • 80051798701 scopus 로고    scopus 로고
    • Hydrothermal carbonization of abundant renewable natural organic chemicals for high- performance supercapacitor electrodes
    • Wei, L., Sevilla, M., Fuertes, A. B., Mokaya, R. & Yushin, G. Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for High- Performance Supercapacitor Electrodes. Adv. Energy Mater. 1, 356-361 (2011).
    • (2011) Adv. Energy Mater. , vol.1 , pp. 356-361
    • Wei, L.1    Sevilla, M.2    Fuertes, A.B.3    Mokaya, R.4    Yushin, G.5
  • 33
    • 0025723698 scopus 로고
    • 2
    • DOI 10.1016/0008-6223(91)90179-M
    • Caturla, F., Molina-Sabio, M. & Rodr?guez-Reinoso, F. Preparation of activated carbon by chemical activation with ZnCl2. Carbon 29, 999-1007 (1991). (Pubitemid 21692572)
    • (1991) Carbon , vol.29 , Issue.7 , pp. 999-1007
    • Caturla, F.1    Molina-Sabio, M.2    Rodriguez-Reinoso, E.3
  • 34
    • 84868122479 scopus 로고    scopus 로고
    • KOH activation of carbon-based materials for energy storage
    • Wang, J. & Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22, 23710-23725 (2012).
    • (2012) J. Mater. Chem. , vol.22 , pp. 23710-23725
    • Wang, J.1    Kaskel, S.2
  • 35
    • 54949139227 scopus 로고    scopus 로고
    • Materials for electrochemical capacitors
    • Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 7, 845-854 (2008).
    • (2008) Nat. Mater. , vol.7 , pp. 845-854
    • Simon, P.1    Gogotsi, Y.2
  • 36
    • 84055212098 scopus 로고    scopus 로고
    • Adsorption of pharmaceuticals to microporous activated carbon treated with potassium hydroxide, carbon dioxide, and steam
    • Fu, H., Yang, L., Wan, Y., Xu, Z. & Zhu, D. Adsorption of Pharmaceuticals to Microporous Activated Carbon Treated with Potassium Hydroxide, Carbon Dioxide, and Steam. J. Environ. Qual. 40, 1886-1894 (2011).
    • (2011) J. Environ. Qual. , vol.40 , pp. 1886-1894
    • Fu, H.1    Yang, L.2    Wan, Y.3    Xu, Z.4    Zhu, D.5
  • 37
    • 7544234502 scopus 로고    scopus 로고
    • What are batteries, fuel cells, and supercapacitors?
    • Winter, M. & Brodd, R. J. What Are Batteries, Fuel Cells, and Supercapacitors?. Chem. Rev. 104, 4245-4270 (2004).
    • (2004) Chem. Rev. , vol.104 , pp. 4245-4270
    • Winter, M.1    Brodd, R.J.2
  • 38
    • 77950102167 scopus 로고    scopus 로고
    • High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon
    • Korenblit, Y. et al. High-Rate Electrochemical Capacitors Based on Ordered Mesoporous Silicon Carbide-Derived Carbon. ACS Nano 4, 1337-1344 (2010).
    • (2010) ACS Nano , vol.4 , pp. 1337-1344
    • Korenblit, Y.1
  • 39
    • 84886273164 scopus 로고    scopus 로고
    • Nonaqueous lithium-ion capacitors with high energy densities using trigol-reduced graphene oxide nanosheets as cathode-active material
    • 10.1002/cssc.201300465
    • Aravindan, V., Mhamane, D., Wong, C. L., Ogale, S. & Madhavi, S. Nonaqueous Lithium-Ion Capacitors with High Energy Densities using Trigol-Reduced Graphene Oxide Nanosheets as Cathode-Active Material. ChemSusChem 10.1002/cssc.201300465 (2013).
    • (2013) ChemSusChem
    • Aravindan, V.1    Mhamane, D.2    Wong, C.L.3    Ogale, S.4    Madhavi, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.