메뉴 건너뛰기




Volumn 29, Issue 21, 2013, Pages 2792-2794

FmcsR: Mismatch tolerant maximum common substructure searching in R

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; BIOLOGY; CLUSTER ANALYSIS; COMPUTER PROGRAM; CONFORMATION; DRUG DEVELOPMENT; PROCEDURES; ARTICLE; METHODOLOGY;

EID: 84886072441     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btt475     Document Type: Article
Times cited : (50)

References (16)
  • 1
    • 79959975084 scopus 로고    scopus 로고
    • ChemMine tools: An online service for analyzing and clustering small molecules
    • Backman, T.W. et al. (2011) ChemMine tools: an online service for analyzing and clustering small molecules. Nucleic Acids Res., 39, 486-491.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 486-491
    • Backman, T.W.1
  • 2
    • 46249123633 scopus 로고    scopus 로고
    • A maximum common substructure-based algorithm for searching and predicting drug-like compounds
    • Cao, Y. et al. (2008a) A maximum common substructure-based algorithm for searching and predicting drug-like compounds. Bioinformatics, 24, 366-374.
    • (2008) Bioinformatics , vol.24 , pp. 366-374
    • Cao, Y.1
  • 3
    • 48249143990 scopus 로고    scopus 로고
    • ChemmineR: A compound mining framework for R
    • Cao, Y. et al. (2008b) ChemmineR: a compound mining framework for R. Bioinformatics, 24, 1733-1734.
    • (2008) Bioinformatics , vol.24 , pp. 1733-1734
    • Cao, Y.1
  • 4
    • 0036827080 scopus 로고    scopus 로고
    • Performance of similarity measures in 2D fragment-based similarity searching: Comparison of structural descriptors and similarity coefficients
    • DOI 10.1021/ci025531g
    • Chen, X. and Reynolds, C.H. (2002) Performance of similarity measures in 2D fragment-based similarity searching: comparison of structural descriptors and similarity coefficients. J. Chem. Inf. Comput. Sci., 42, 1407-1414. (Pubitemid 35468329)
    • (2002) Journal of Chemical Information and Computer Sciences , vol.42 , Issue.6 , pp. 1407-1414
    • Chen, X.1    Reynolds, C.H.2
  • 5
    • 3142716665 scopus 로고    scopus 로고
    • Thirty years of graph matching in pattern recognition
    • Conte, D. et al. (2004) Thirty years of graph matching in pattern recognition. Int. J. Pattern Recognit. Artif. Intell., 18, 265-298.
    • (2004) Int. J. Pattern Recognit. Artif. Intell. , vol.18 , pp. 265-298
    • Conte, D.1
  • 6
    • 41349122416 scopus 로고    scopus 로고
    • Optimization of CAMD techniques 3. Virtual screening enrichment studies: A help or hindrance in tool selection?
    • Good, A.C. and Oprea, T.I. (2008) Optimization of CAMD techniques 3. Virtual screening enrichment studies: a help or hindrance in tool selection? J. Comput. Aided Mol. Des., 22, 169-178.
    • (2008) J. Comput. Aided Mol. Des. , vol.22 , pp. 169-178
    • Good, A.C.1    Oprea, T.I.2
  • 7
    • 79955388687 scopus 로고    scopus 로고
    • MultiMCS: A fast algorithm for the maximum common substructure problem on multiple molecules
    • Hariharan, R. et al. (2011) MultiMCS: a fast algorithm for the maximum common substructure problem on multiple molecules. J. Chem. Inf. Model., 51, 788-806.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 788-806
    • Hariharan, R.1
  • 8
    • 14944357243 scopus 로고    scopus 로고
    • Heuristics for chemical compound matching
    • Hattori, M. et al. (2003) Heuristics for chemical compound matching. Genome Inform., 14, 144-153.
    • (2003) Genome Inform. , vol.14 , pp. 144-153
    • Hattori, M.1
  • 10
    • 74049133612 scopus 로고    scopus 로고
    • Optimal assignment methods for ligand-based virtual screening
    • Jahn, A. et al. (2009) Optimal assignment methods for ligand-based virtual screening. J. Cheminform., 1, 14.
    • (2009) J. Cheminform. , vol.1 , pp. 14
    • Jahn, A.1
  • 11
    • 80053324958 scopus 로고    scopus 로고
    • SHAFTS: A hybrid approach for 3D molecular similarity calculation. 1. Method and assessment of virtual screening
    • Liu, X. et al. (2011) SHAFTS: a hybrid approach for 3D molecular similarity calculation. 1. Method and assessment of virtual screening. J. Chem. Inf. Model., 51, 2372-2385.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2372-2385
    • Liu, X.1
  • 12
    • 41249091782 scopus 로고    scopus 로고
    • Pybel: A Python wrapper for the OpenBabel cheminformatics toolkit
    • O'Boyle, N.M. et al. (2008) Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit. Chem. Cent. J., 2, 5.
    • (2008) Chem. Cent. J. , vol.2 , pp. 5
    • O'Boyle, N.M.1
  • 13
    • 74049089230 scopus 로고    scopus 로고
    • Small molecule subgraph detector (SMSD) toolkitl
    • Rahman, S.A. et al. (2009) Small Molecule Subgraph Detector (SMSD) toolkitl. J. Cheminform., 1, 12.
    • (2009) J. Cheminform. , vol.1 , pp. 12
    • Rahman, S.A.1
  • 14
    • 0036663707 scopus 로고    scopus 로고
    • Maximum common subgraph isomorphism algorithms for the matching of chemical structures
    • DOI 10.1023/A:1021271615909
    • Raymond, J.W. and Willett, P. (2002) Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J. Comput. Aided Mol. Des., 16, 521-533. (Pubitemid 36013605)
    • (2002) Journal of Computer-Aided Molecular Design , vol.16 , Issue.7 , pp. 521-533
    • Raymond, J.W.1    Willett, P.2
  • 15
    • 84858033363 scopus 로고    scopus 로고
    • Trends in chemical graph data mining
    • In: Aggarwal, C.C. and Wang, H. (eds). Springer, New York
    • Wale, N. et al. (2010) Trends in chemical graph data mining. In: Aggarwal, C.C. and Wang, H. (eds) Managing and Mining Graph Data. Springer, New York, pp. 581-606.
    • (2010) Managing and Mining Graph Data , pp. 581-606
    • Wale, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.