-
1
-
-
79959426890
-
Battery technologies for large-scale stationary energy storage
-
Soloveichik, G. L. Battery technologies for large-scale stationary energy storage. Annu. Rev. Chem. Biomol. Eng. 2, 503-527 (2011)
-
(2011)
Annu. Rev. Chem. Biomol. Eng
, vol.2
, pp. 503-527
-
-
Soloveichik, G.L.1
-
2
-
-
0033873691
-
The mechanism of capacity fade of rechargeable alkaline manganese dioxide zinc cells
-
Shen, Y. W. &Kordesch, K. The mechanism of capacity fade of rechargeable alkaline manganese dioxide zinc cells. J. Power Sources 87, 162-166 (2000)
-
(2000)
J. Power Sources
, vol.87
, pp. 162-166
-
-
Shen, Y.W.1
Kordesch, K.2
-
3
-
-
0035976466
-
Nickel-based rechargeable batteries
-
Shukla, A. K., Venugopalan, S. &Hariprakash, B. Nickel-based rechargeable batteries. J. Power Sources 100, 125-148 (2001)
-
(2001)
J. Power Sources
, vol.100
, pp. 125-148
-
-
Shukla, A.K.1
Venugopalan, S.2
Hariprakash, B.3
-
4
-
-
1542364535
-
Advances in alkaline batteries
-
Kohler, U., Antonius, C. &Bauerlein, P. Advances in alkaline batteries. J. Power Sources 127, 45-52 (2004)
-
(2004)
J. Power Sources
, vol.127
, pp. 45-52
-
-
Kohler, U.1
Antonius, C.2
Bauerlein, P.3
-
5
-
-
84863308691
-
An ultrafast nickel-iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials
-
Wang, H. L. et al.An ultrafast nickel-iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nat. Commun. 3, 917 (2012)
-
(2012)
Nat. Commun
, vol.3
, pp. 917
-
-
Wang, H.L.1
-
6
-
-
67749116350
-
Alkaline rechargeable Ni/Co batteries: Cobalt hydroxides as negative electrode materials
-
Gao, X. P., Yao, S. M., Yan, T. Y. &Zhou, Z. Alkaline rechargeable Ni/Co batteries: Cobalt hydroxides as negative electrode materials. Energy Environ. Sci. 2, 502-505 (2009)
-
(2009)
Energy Environ. Sci
, vol.2
, pp. 502-505
-
-
Gao, X.P.1
Yao, S.M.2
Yan, T.Y.3
Zhou, Z.4
-
7
-
-
0028439202
-
Rechargeable lithium batteries with aqueous electrolytes
-
Li, W., Dahn, J. R. &Wainwright, D. S. Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115-1118 (1994)
-
(1994)
Science
, vol.264
, pp. 1115-1118
-
-
Li, W.1
Dahn, J.R.2
Wainwright, D.S.3
-
8
-
-
33846112234
-
An aqueous rechargeable lithium battery with good cycling performance
-
Wang, G. J. et al. An aqueous rechargeable lithium battery with good cycling performance. Angew. Chem. Int. Ed. 46, 295-297 (2007)
-
(2007)
Angew. Chem. Int. Ed
, vol.46
, pp. 295-297
-
-
Wang, G.J.1
-
9
-
-
33846643649
-
Electrochemical properties of TiP2O7 and LiTi2(PO4)3 as anode material for lithium ion battery with aqueous solution electrolyte
-
Wang, H. B., Huang, K. L., Zeng, Y. Q., Yang, S. &Chen, L. Q. Electrochemical properties of TiP2O7 and LiTi2(PO4)3 as anode material for lithium ion battery with aqueous solution electrolyte. Electrochim. Acta. 52, 3280-3285 (2007)
-
(2007)
Electrochim. Acta
, vol.52
, pp. 3280-3285
-
-
Wang, H.B.1
Huang, K.L.2
Zeng, Y.Q.3
Yang, S.4
Chen, L.Q.5
-
10
-
-
77956050828
-
Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte
-
Luo, J. Y., Cui, W. J., He, P. &Xia, Y. Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760-765 (2010)
-
(2011)
Nat. Chem
, vol.2
, pp. 760-765
-
-
Luo, J.Y.1
Cui, W.J.2
He, P.3
Xia, Y.Y.4
-
11
-
-
84875155308
-
An aqueous rechargeable lithium battery using coated Li metal as anode
-
Wang, X. J., Hou, Y. Y., Zhu, Y. S., Wu, Y. P. &Holze, R. An aqueous rechargeable lithium battery using coated Li metal as anode. Sci. Rep. 3, 1401 (2013)
-
(2013)
Sci. Rep
, vol.3
, pp. 1401
-
-
Wang, X.J.1
Hou, Y.Y.2
Zhu, Y.S.3
Wu, Y.P.4
Holze, R.5
-
12
-
-
84869420954
-
A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage
-
Pasta, M.,Wessells, C. D., Huggins, R. A. &Cui, Y. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3, 1149 (2012)
-
(2012)
Nat. Commun
, vol.3
, pp. 1149
-
-
Pasta, M.1
Wessells, C.D.2
Huggins, R.A.3
Cui, Y.4
-
13
-
-
84862931490
-
Energetic zinc ion chemistry: The rechargeable zinc ion battery
-
Xu, C. J., Li, B. H., Du, H. D. &Kang, F. Y. Energetic zinc ion chemistry: The rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933-935 (2012)
-
(2012)
Angew. Chem. Int. Ed
, vol.51
, pp. 933-935
-
-
Xu, C.J.1
Li, B.H.2
Du, H.D.3
Kang, F.Y.4
-
14
-
-
76449111593
-
Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device
-
Whitacre, J. F., Tevar, A.,&Sharma, S. Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem. Commun. 12, 463-466 (2010)
-
(2011)
Electrochem. Commun
, vol.12
, pp. 463-466
-
-
Whitacre, J.F.1
Tevar, A.2
Sharma, S.3
-
15
-
-
80052087354
-
Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries
-
Park, S. I., Gocheva, I., Okada, S. &Yamaki, J. I. Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries. J. Electrochem. Soc. 158, A1067-A1070 (2011)
-
(2011)
J. Electrochem. Soc
, vol.158
, pp. A1067-A1070
-
-
Park, S.I.1
Gocheva, I.2
Okada, S.3
Yamaki, J.I.4
-
16
-
-
84949299718
-
Microwave synthesized NaTi2(PO4)3 anode materials for rechargeable aqueous electrolyte sodium-ion battery
-
222nd ECS meeting, Honolulu, Hawaii
-
Wu, W., Mohamed, A. &Whitacre, J. F. Microwave synthesized NaTi2(PO4)3 anode materials for rechargeable aqueous electrolyte sodium-ion battery. Meet. Abstr. 1859 (2012). (222nd ECS meeting, Honolulu, Hawaii)
-
(2012)
Meet. Abstr
, vol.1859
-
-
Wu, W.1
Mohamed, A.2
Whitacre, J.F.3
-
17
-
-
84876697105
-
Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 system
-
Li, Z., Young, D., Xiang, K., Caeter, W. C. &Chiang, Y. M. Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 3, 290-294 (2013)
-
(2013)
Adv. Energy Mater
, vol.3
, pp. 290-294
-
-
Li, Z.1
Young, D.2
Xiang, K.3
Caeter, W.C.4
Chiang, Y.M.5
-
18
-
-
82555195041
-
Copper hexacyanoferrate battery electrodes with long cycle life and high power
-
Wessells, C. D., Huggins, R. A. &Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011)
-
(2011)
Nat. Commun
, vol.2
, pp. 550
-
-
Wessells, C.D.1
Huggins, R.A.2
Cui, Y.3
-
19
-
-
84855327156
-
The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes
-
Wessells, C. D., Peddada, S. V., McDowell, M. T., Huggins, R. A. &Cui, Y. The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. J. Electrochem. Soc. 159, A98-A103 (2012)
-
(2012)
J. Electrochem. Soc
, vol.159
, pp. A98-A103
-
-
Wessells, C.D.1
Peddada, S.V.2
McDowell, M.T.3
Huggins, R.A.4
Cui, Y.5
-
20
-
-
84875986520
-
A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry
-
Wu, X. Y., Cao, Y. L., Ai, X. P., Qian, J. F. &Yang, H. X. A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 31, 145-148 (2013)
-
(2013)
Electrochem. Commun
, vol.31
, pp. 145-148
-
-
Wu, X.Y.1
Cao, Y.L.2
Ai, X.P.3
Qian, J.F.4
Yang, H.X.5
-
21
-
-
84859139965
-
Ab initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery
-
Kim, H. et al. Ab initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery. Chem. Mater. 24, 1205-1211 (2012)
-
(2012)
Chem. Mater
, vol.24
, pp. 1205-1211
-
-
Kim, H.1
-
22
-
-
34247871518
-
Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2
-
Sauvage, F., Laffont, L., Tarascon, J. M. &Baudrin, E. Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg. Chem. 46, 3289-3294 (2007)
-
(2007)
Inorg. Chem
, vol.46
, pp. 3289-3294
-
-
Sauvage, F.1
Laffont, L.2
Tarascon, J.M.3
Baudrin, E.4
-
23
-
-
0036907635
-
Lithium insertion into titanium phosphates, silicates, and sulfates
-
Patoux, S. &Masquelier, C. Lithium insertion into titanium phosphates, silicates, and sulfates. Chem. Mater. 14, 5057-5068 (2002)
-
(2002)
Chem. Mater
, vol.14
, pp. 5057-5068
-
-
Patoux, S.1
Masquelier, C.2
-
24
-
-
84941777310
-
-
Processing, Uses and Properties Elsevier Academic Press, Amsterdam, Boston
-
Garrett, D. E. Handbook of Lithium and Natural Calcium Chlorides: Their Deposits, Processing, Uses and Properties. Elsevier Academic Press, Amsterdam, Boston, 2004.
-
(2004)
Handbook of Lithium and Natural Calcium Chlorides: Their Deposits
-
-
Garrett, D.E.1
-
25
-
-
0001363939
-
Mechanism of proton insertion and characterization of the proton sites in lithium manganate spinels
-
Ammundsen, B., Jones, D. J., Roziere, J. &Burns, G. R. Mechanism of proton insertion and characterization of the proton sites in lithium manganate spinels. Chem. Mater. 7, 2151-2160 (1995)
-
(1995)
Chem. Mater
, vol.7
, pp. 2151-2160
-
-
Ammundsen, B.1
Jones, D.J.2
Roziere, J.3
Burns, G.R.4
|