-
1
-
-
4944222353
-
Multifractal analysis of a class of additive processes with correlated nonstationary increments
-
BARRAL J., LéVY VéHEL J., "Multifractal analysis of a class of additive processes with correlated nonstationary increments", Electronic Journal of Probability, vol. 9, p. 508-543, 2001.
-
(2001)
Electronic Journal of Probability
, vol.9
, pp. 508-543
-
-
Barral, J.1
Lévy Véhel, J.2
-
2
-
-
0001891207
-
Second microlocalization and propagation of singularities for semilinear hyperbolic equations
-
in Hyperbolic equations and related topics (Katata/Kyoto, 1984), Academic Press, Boston, Massachusetts
-
BONY J., "Second microlocalization and propagation of singularities for semilinear hyperbolic equations", in Hyperbolic equations and related topics (Katata/Kyoto, 1984), Academic Press, Boston, Massachusetts, p. 11-49, 1986.
-
(1986)
, pp. 11-49
-
-
Bony, J.1
-
3
-
-
0000636568
-
Ensembles impropres et nombre dimensionnel
-
361-376, see also Les définitions modernes de la dimension, Hermann, 1936).
-
BOULIGAND G., "Ensembles impropres et nombre dimensionnel", Bull. Soc. Math., vol. 52, p. 320-334 and 361-376, 1928 (see also Les définitions modernes de la dimension, Hermann, 1936).
-
(1928)
Bull. Soc. Math.
, vol.52
, pp. 320-334
-
-
Bouligand, G.1
-
4
-
-
0034366502
-
Caloric measure on the domains bounded by Weierstrass-type graphs
-
BOUSCH T., HEURTEAUX Y., "Caloric measure on the domains bounded by Weierstrass-type graphs", Ann. Acad. Sci. Fenn. Math., vol. 25, p. 501-522, 2000.
-
(2000)
Ann. Acad. Sci. Fenn. Math.
, vol.25
, pp. 501-522
-
-
Bousch, T.1
Heurteaux, Y.2
-
5
-
-
0029745477
-
Change detection in sequences of images by multifractal analysis
-
in ICASSP'96 Atlanta, Georgia
-
CANUS C., LéVY VéHEL J., "Change detection in sequences of images by multifractal analysis", in ICASSP'96 (Atlanta, Georgia), 1996.
-
(1996)
-
-
Canus, C.1
Lévy Véhel, J.2
-
6
-
-
0036887822
-
Signal representation and segmentation based on multifractal stationarity
-
DAOUDI K., LéVY VéHEL J., "Signal representation and segmentation based on multifractal stationarity", Signal Processing, vol. 82, no. 12, p. 2015-2024, 2002.
-
(2002)
Signal Processing
, vol.82
, Issue.12
, pp. 2015-2024
-
-
Daoudi, K.1
Lévy Véhel, J.2
-
7
-
-
0001655696
-
Evaluating the fractal dimension of profiles
-
DUBUC B., TRICOT C., ROQUES-CARMES C., ZUCKER S., "Evaluating the fractal dimension of profiles", Physical Review A, vol. 39, p. 1500-1512, 1989.
-
(1989)
Physical Review A
, vol.39
, pp. 1500-1512
-
-
Dubuc, B.1
Tricot, C.2
Roques-Carmes, C.3
Zucker, S.4
-
8
-
-
0003142431
-
Exterior dimension of large fractals
-
GREBOGI C., MCDONALD S., OTT E., YORKE J., "Exterior dimension of large fractals", Physics Letters A, vol. 110, p. 1-4, 1985.
-
(1985)
Physics Letters A
, vol.110
, pp. 1-4
-
-
Grebogi, C.1
Mcdonald, S.2
Ott, E.3
Yorke, J.4
-
10
-
-
34250950477
-
Dimension und äusseres Mass
-
HAUSDORFF F., "Dimension und äusseres Mass", Math. Ann., vol. 79, p. 157-179, 1919.
-
(1919)
Math. Ann.
, vol.79
, pp. 157-179
-
-
Hausdorff, F.1
-
11
-
-
0030240042
-
Wavelet methods for pointwise regularity and local oscillations of functions
-
JAFFARD S., MEYER Y., "Wavelet methods for pointwise regularity and local oscillations of functions", Mem. Amer. Math. Soc., vol. 123, 1996.
-
(1996)
Mem. Amer. Math. Soc.
, vol.123
-
-
Jaffard, S.1
Meyer, Y.2
-
12
-
-
84886072445
-
-
Ensembles parfaits et séries trigonométriques, Hermann
-
KAHANE J., SALEM R., Ensembles parfaits et séries trigonométriques, Hermann, 1963.
-
(1963)
-
-
Kahane, J.1
Salem, R.2
-
13
-
-
0000624821
-
Epsilon-entropy and epsilon-capacity of sets in functional spaces
-
KOLMOGOROV A., TIHOMIROV V., "Epsilon-entropy and epsilon-capacity of sets in functional spaces", American Mathematical Society Translations, vol. 17, p. 277-364, 1961.
-
(1961)
American Mathematical Society Translations
, vol.17
, pp. 277-364
-
-
Kolmogorov, A.1
Tihomirov, V.2
-
14
-
-
1342317761
-
Measuring functions smoothness with local fractional derivatives
-
KOLWANKAR K., LéVY VéHEL J., "Measuring functions smoothness with local fractional derivatives", Frac. Calc. Appl. Anal., vol. 4, no. 3, p. 285-301, 2001.
-
(2001)
Frac. Calc. Appl. Anal.
, vol.4
, Issue.3
, pp. 285-301
-
-
Kolwankar, K.1
Lévy Véhel, J.2
-
15
-
-
0036351743
-
A time domain characterization of the fine local regularity of functions
-
KOLWANKAR K., LéVY VéHEL J., "A time domain characterization of the fine local regularity of functions", J. Fourier Anal. Appl., vol. 8, no. 4, p. 319-334, 2002.
-
(2002)
J. Fourier Anal. Appl.
, vol.8
, Issue.4
, pp. 319-334
-
-
Kolwankar, K.1
Lévy Véhel, J.2
-
16
-
-
84886038962
-
Introduction to the multifractal analysis of images
-
in FISHER Y. (Ed.), Fractal Image Encoding and Analysis, Springer-Verlag
-
LLéVY VéHEL J., "Introduction to the multifractal analysis of images", in FISHER Y. (Ed.), Fractal Image Encoding and Analysis, Springer-Verlag, 1996.
-
(1996)
-
-
Lévy Véhel, J.1
-
17
-
-
84885979786
-
Numerical computation of the large deviation multifractal spectrum
-
in CFIC Rome, Italy
-
LLéVY VéHEL J., "Numerical computation of the large deviation multifractal spectrum", in CFIC (Rome, Italy), 1996.
-
(1996)
-
-
Lévy Véhel, J.1
-
18
-
-
0002710645
-
Fractional Brownian motion and data traffic modeling: The other end of the spectrum
-
in LéVY VéHEL J., LUTTON E., TRICOT C. (Eds.), Fractals in Engineering, Springer-Verlag
-
LéVY VéHEL J., RIEDI R., "Fractional Brownian motion and data traffic modeling: The other end of the spectrum", in LéVY VéHEL J., LUTTON E., TRICOT C. (Eds.), Fractals in Engineering, Springer-Verlag, 1997.
-
(1997)
-
-
Lévy Véhel, J.1
Riedi, R.2
-
20
-
-
0001239909
-
Multifractal analysis of Choquet capacities
-
LLéVY VéHEL J., VOJAK R., "Multifractal analysis of Choquet capacities", Advances in Applied Mathematics, vol. 20, no. 1, p. 1-43, 1998.
-
(1998)
Advances in Applied Mathematics
, vol.20
, Issue.1
, pp. 1-43
-
-
Lévy Véhel, J.1
Vojak, R.2
-
21
-
-
84885990341
-
-
A multiplicative multifractal model for TCP traffic", in ISCC'2001 Tunisia
-
LéVY VéHEL J., SIKDAR B., "A multiplicative multifractal model for TCP traffic", in ISCC'2001 (Tunisia), 2001.
-
(2001)
-
-
Lévy Véhel, J.1
Sikdar, B.2
-
22
-
-
84886078863
-
Multifractal processing of signals forthcoming.
-
LéVY VéHEL J., "Multifractal processing of signals", forthcoming.
-
-
-
Lévy Véhel, J.1
-
23
-
-
33747050208
-
The 2-microlocal formalism
-
LLéVY VéHEL J., SEURET S., "The 2-microlocal formalism", in Fractal Geometry and Applications: A Jubliee of Benoit Mandelbrot, Proc. Sympos. Pure Math., PSPUM, vol. 72, Part 2, p. 153-215, 2004.
-
(2004)
in Fractal Geometry and Applications: A Jubliee of Benoit Mandelbrot PSympos. Pure Math. PSPUM
, vol.72
, Issue.2
, pp. 153-215
-
-
Lévy Véhel, J.1
Seuret, S.2
-
24
-
-
33947388325
-
On various multifractal spectra
-
in BANDT C. MOSC, ZÄHLE M. (Eds.), Fractal Geometry and Stochastics III, Progress in Probability, Birtkhäuser Verlag
-
LLéVY VéHEL J., "On various multifractal spectra", in BANDT C., MOSCO U., ZÄHLE M. (Eds.), Fractal Geometry and Stochastics III, Progress in Probability, Birtkhäuser Verlag, vol. 57, p. 23-42, 2004.
-
(2004)
, vol.57
, pp. 23-42
-
-
Lévy Véhel, J.1
-
25
-
-
84972500327
-
The Hausdorff dimension of general Sierpinski carpets
-
MCMULLEN C., "The Hausdorff dimension of general Sierpinski carpets", Nagoya Mathematical Journal, vol. 96, p. 1-9, 1984.
-
(1984)
Nagoya Mathematical Journal
, vol.96
, pp. 1-9
-
-
Mcmullen, C.1
-
26
-
-
84885982095
-
-
TCP traffic is multifractal: a numerical study, Technical Report RR-3129, INRIA
-
RIEDI R., LéVY VéHEL J., TCP traffic is multifractal: a numerical study, Technical Report RR-3129, INRIA, 1997.
-
(1997)
-
-
Riedi, R.1
Lévy Véhel, J.2
-
27
-
-
0010800070
-
A regularization approach to fractional dimension estimation
-
in Fractals'98 Malta
-
ROUEFF F., LéVY VéHEL J., "A regularization approach to fractional dimension estimation", in Fractals'98 (Malta), 1998.
-
(1998)
-
-
Roueff, F.1
Lévy Véhel, J.2
-
28
-
-
0742301928
-
The local Hölder function of a continuous function
-
SEURET S., LéVY VéHEL J., "The local Hölder function of a continuous function", Appl. Comput. Hamron. Anal., vol. 13, no. 3, p. 263-276, 2002.
-
(2002)
Appl. Comput. Hamron. Anal.
, vol.13
, Issue.3
, pp. 263-276
-
-
Seuret, S.1
Lévy Véhel, J.2
-
29
-
-
84971877468
-
Two definitions of fractal dimension
-
TRICOT C., "Two definitions of fractal dimension", Math. Proc. Camb. Phil. Soc., vol. 91, p. 57-74, 1982.
-
(1982)
Math. Proc. Camb. Phil. Soc.
, vol.91
, pp. 57-74
-
-
Tricot, C.1
-
31
-
-
0037764644
-
The geometry of the complement of a fractal set
-
TTRICOT C., "The geometry of the complement of a fractal set", Physics Letters A, vol. 114, p. 430-434, 1986.
-
(1986)
Physics Letters A
, vol.114
, pp. 430-434
-
-
Tricot, C.1
-
32
-
-
0001144768
-
Dimensions aux bords d'un ouvert
-
TRICOT C., "Dimensions aux bords d'un ouvert", Ann. Sc. Math. Québec, vol. 11, no. 1, p. 205-235, 1987.
-
(1987)
Ann. Sc. Math. Québec
, vol.11
, Issue.1
, pp. 205-235
-
-
Tricot, C.1
-
33
-
-
0000941604
-
Evaluation de la dimension fractale d'un graphe
-
TRICOT C., QUINIOU J., WEHBI D., ROQUES-CARMES C., DUBUC B., "Evaluation de la dimension fractale d'un graphe", Rev. Phys. Appl., vol. 23, p. 111-124, 1988.
-
(1988)
Rev. Phys. Appl.
, vol.23
, pp. 111-124
-
-
Tricot, C.1
Quiniou, J.2
Wehbi, D.3
Roques-Carmes, C.4
Dubuc, B.5
-
35
-
-
0642353891
-
Multifractal description of road traffic structure
-
in Seventh IFAC/IFORS Symposium on Transportation Systems: Theory and Application of Advanced Technology Tianjin, China
-
VOJAK R., LéVY VéHEL J., DANECH-PAJOUH M., "Multifractal description of road traffic structure", in Seventh IFAC/IFORS Symposium on Transportation Systems: Theory and Application of Advanced Technology (Tianjin, China), p. 942-947, 1994.
-
(1994)
, pp. 942-947
-
-
Vojak, R.1
Lévy Véhel, J.2
Danech-Pajouh, M.3
|