-
1
-
-
85014838882
-
-
Technical Report Technical Report r-397, Cognitive Systems Laboratory, Department of Computer Science, UCLA
-
Bareinboim and Pearl, 2012a] Bareinboim, E., and Pearl, J. 2012a. Causal inference by surrogate experiments: zidentifiability. Technical Report Technical Report r-397, Cognitive Systems Laboratory, Department of Computer Science, UCLA.
-
(2012)
Causal Inference by Surrogate Experiments: Zidentifiability
-
-
Bareinboim, E.1
Pearl, J.2
-
3
-
-
84894404372
-
Controlling selection bias in causal inference
-
Bareinboim and Pearl, 2012c] In Girolami, M., and Lawrence, N., eds
-
Bareinboim and Pearl, 2012c] Bareinboim, E., and Pearl, J. 2012c. Controlling selection bias in causal inference. In Girolami, M., and Lawrence, N., eds., Proceedings of The Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2012), JMLR (22), 100-108.
-
(2012)
Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2012), JMLR
, Issue.22
, pp. 100-108
-
-
Bareinboim, E.1
Pearl, J.2
-
4
-
-
0001836396
-
Testing identifiability of causal effects
-
Galles and Pearl, 1995] In Besnard, P., and Hanks, S., eds
-
Galles and Pearl, 1995] Galles, D., and Pearl, J. 1995. Testing identifiability of causal effects. In Besnard, P., and Hanks, S., eds., Uncertainty in Artificial Intelligence 11. San Francisco: Morgan Kaufmann. 185-195.
-
(1995)
Uncertainty in Artificial Intelligence 11. San Francisco: Morgan Kaufmann
, pp. 185-195
-
-
Galles, D.1
Pearl, J.2
-
5
-
-
80052140813
-
Axiomatizing causal reasoning
-
Halpern, 1998] In Cooper, G., and Moral, S., eds
-
Halpern, 1998] Halpern, J. 1998. Axiomatizing causal reasoning. In Cooper, G., and Moral, S., eds., Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann. 202-210. Also, Journal of Artificial Intelligence Research 12:3, 17-37, 2000.
-
(1998)
Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann. 202-210. Also, Journal of Artificial Intelligence Research
, vol.12
, pp. 17-37
-
-
Halpern, J.1
-
6
-
-
33750720924
-
Identifiability in causal bayesian networks: A sound and complete algorithm
-
Huang and Valtorta, 2006] Menlo Park, CA: AAAI Press
-
Huang and Valtorta, 2006] Huang, Y., and Valtorta, M. 2006. Identifiability in causal bayesian networks: A sound and complete algorithm. In Proceedings of the Twenty-First National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press. 1149-1156.
-
(2006)
Proceedings of the Twenty-First National Conference on Artificial Intelligence
, pp. 1149-1156
-
-
Huang, Y.1
Valtorta, M.2
-
7
-
-
0010665340
-
Identifiability criteria for causal effects of joint interventions
-
Kuroki and Miyakawa, 1999]
-
Kuroki and Miyakawa, 1999] Kuroki, M., and Miyakawa, M. 1999. Identifiability criteria for causal effects of joint interventions. Journal of the Royal Statistical Society 29:105-117.
-
(1999)
Journal of the Royal Statistical Society
, vol.29
, pp. 105-117
-
-
Kuroki, M.1
Miyakawa, M.2
-
8
-
-
80055025650
-
Transportability of causal and statistical relations: A formal approach
-
Pearl and Bareinboim, 2011] Menlo Park, CA: AAAI Press
-
Pearl and Bareinboim, 2011] Pearl, J., and Bareinboim, E. 2011. Transportability of causal and statistical relations: A formal approach. In Proceedings of the Twenty-Fifth National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press. 247-254.
-
(2011)
Proceedings of the Twenty-Fifth National Conference on Artificial Intelligence
, pp. 247-254
-
-
Pearl, J.1
Bareinboim, E.2
-
9
-
-
0000657751
-
Probabilistic evaluation of sequential plans from causal models with hidden variables
-
Pearl and Robins, 1995] In Besnard, P., and Hanks, S., eds
-
Pearl and Robins, 1995] Pearl, J., and Robins, J. 1995. Probabilistic evaluation of sequential plans from causal models with hidden variables. In Besnard, P., and Hanks, S., eds., Uncertainty in Artificial Intelligence 11. San Francisco: Morgan Kaufmann. 444-453.
-
(1995)
Uncertainty in Artificial Intelligence 11. San Francisco: Morgan Kaufmann
, pp. 444-453
-
-
Pearl, J.1
Robins, J.2
-
10
-
-
77956888769
-
Causal diagrams for empirical research
-
Pearl, 1995]
-
Pearl, 1995] Pearl, J. 1995. Causal diagrams for empirical research. Biometrika 82(4):669-710.
-
(1995)
Biometrika
, vol.82
, Issue.4
, pp. 669-710
-
-
Pearl, J.1
-
11
-
-
0003398906
-
-
Pearl, 2000] New York: Cambridge University Press. Second ed., 2009
-
Pearl, 2000] Pearl, J. 2000. Causality: Models, Reasoning, and Inference. New York: Cambridge University Press. Second ed., 2009.
-
(2000)
Causality: Models, Reasoning, and Inference
-
-
Pearl, J.1
-
12
-
-
84885986304
-
The latent power of docalculus
-
Pearl, 2012a]
-
Pearl, 2012a] Pearl, J. 2012a. The latent power of docalculus. In this proceedings.
-
(2012)
This Proceedings
-
-
Pearl, J.1
-
13
-
-
84886028447
-
-
Pearl, 2012b] Technical Report Technical Report r-387, Cognitive Systems Laboratory, Department of Computer Science, UCLA
-
Pearl, 2012b] Pearl, J. 2012b. Some thoughts concerning transfer learning with applications to meta-analysis and data sharing estimation. Technical Report Technical Report r-387, Cognitive Systems Laboratory, Department of Computer Science, UCLA.
-
(2012)
Some Thoughts Concerning Transfer Learning with Applications to Meta-analysis and Data Sharing Estimation
-
-
Pearl, J.1
-
14
-
-
33750742436
-
Identification of joint interventional distributions in recursive semi-markovian causal models
-
Shpitser and Pearl, 2006] Menlo Park, CA: AAAI Press
-
Shpitser and Pearl, 2006] Shpitser, I., and Pearl, J. 2006. Identification of joint interventional distributions in recursive semi-Markovian causal models. In Proceedings of the Twenty-First National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press. 1219-1226.
-
(2006)
Proceedings of the Twenty-First National Conference on Artificial Intelligence
, pp. 1219-1226
-
-
Shpitser, I.1
Pearl, J.2
-
15
-
-
0003614273
-
-
Spirtes, Glymour, and Scheines, 1993] New York: Springer-Verlag
-
Spirtes, Glymour, and Scheines, 1993] Spirtes, P.; Glymour, C.; and Scheines, R. 1993. Causation, Prediction, and Search. New York: Springer-Verlag.
-
(1993)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
16
-
-
0036927237
-
A general identification condition for causal effects
-
Tian and Pearl, 2002] Menlo Park, CA: AAAI Press/The MIT Press
-
Tian and Pearl, 2002] Tian, J., and Pearl, J. 2002. A general identification condition for causal effects. In Proceedings of the Eighteenth National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press/The MIT Press. 567-573.
-
(2002)
Proceedings of the Eighteenth National Conference on Artificial Intelligence
, pp. 567-573
-
-
Tian, J.1
Pearl, J.2
|