메뉴 건너뛰기




Volumn 5, Issue 3, 2013, Pages 267-304

GPU accelerated greedy algorithms for compressed sensing

Author keywords

Combinatorial optimization; Compressed sensing; CoSaMP; Graphics processing units; Greedy algorithms; HTP; IHT; NIHT; Parallel computing; Sparse approximation; Subspace pursuit

Indexed keywords

APPROXIMATION ALGORITHMS; COMBINATORIAL MATHEMATICS; COMBINATORIAL OPTIMIZATION; COMPRESSED SENSING; COMPUTER GRAPHICS; COMPUTER GRAPHICS EQUIPMENT; IMAGE CODING; ITERATIVE METHODS; MATLAB; PARALLEL PROCESSING SYSTEMS; PROGRAM PROCESSORS; SOFTWARE TESTING; VECTORS;

EID: 84885963860     PISSN: 18672949     EISSN: 18672957     Source Type: Journal    
DOI: 10.1007/s12532-013-0056-5     Document Type: Article
Times cited : (30)

References (35)
  • 1
    • 84922676879 scopus 로고    scopus 로고
    • Fast k-selection algorithms for graphics processing units
    • Article 4.2
    • Alabi, T., Blanchard, J., Gordon, B., Steinbach, R.: Fast k-selection algorithms for graphics processing units. ACM J. Exp. Algorithmics 17(2), 4.2:1-4.2:29 (2012) (Article 4.2)
    • (2012) ACM J. Exp. Algorithmics , vol.17 , Issue.2 , pp. 421-4229
    • Alabi, T.1    Blanchard, J.2    Gordon, B.3    Steinbach, R.4
  • 2
    • 0002525517 scopus 로고
    • Selection by distributive partitioning
    • Allison, D., Noga, M.: Selection by distributive partitioning. Inf. Process. Lett. 11(1), 7-8 (1980)
    • (1980) Inf. Process. Lett. , vol.11 , Issue.1 , pp. 7-8
    • Allison, D.1    Noga, M.2
  • 3
    • 84892668070 scopus 로고    scopus 로고
    • Parallel calculation of the median and order statistics on GPUs with application to robust regression
    • abs/1104.2
    • Beliakov, G.: Parallel calculation of the median and order statistics on GPUs with application to robust regression. Computing Research Repository abs/1104.2 (2011)
    • (2011) Computing Research Repository
    • Beliakov, G.1
  • 4
    • 65649137930 scopus 로고    scopus 로고
    • Probing the Pareto frontier for basis pursuit solutions
    • Berg, E.v.d., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31(2), 890-912 (2008)
    • (2008) SIAM J. Sci. Comput. , vol.31 , Issue.2 , pp. 890-912
    • Berg, E.V.D.1    Friedlander, M.P.2
  • 7
    • 69949164527 scopus 로고    scopus 로고
    • Iterative hard thresholding for compressed sensing
    • Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265-274 (2009)
    • (2009) Appl. Comput. Harmon. Anal. , vol.27 , Issue.3 , pp. 265-274
    • Blumensath, T.1    Davies, M.E.2
  • 8
    • 77949703326 scopus 로고    scopus 로고
    • Normalised iterative hard thresholding; Guaranteed stability and performance
    • Blumensath, T., Davies,M.E.: Normalised iterative hard thresholding; guaranteed stability and performance. IEEE Select. Topics Signal Process. 4(2), 298-309 (2010)
    • (2010) IEEE Select. Topics Signal Process. , vol.4 , Issue.2 , pp. 298-309
    • Blumensath, T.1    Davies, M.E.2
  • 9
    • 84878104490 scopus 로고    scopus 로고
    • Compressive sampling
    • Eur. Math. Soc., Zürich
    • Candès, E.J.: Compressive sampling. In: International Congress ofMathematicians, Vol. III, pp. 1433-1452. Eur. Math. Soc., Zürich (2006)
    • (2006) International Congress of Mathematicians , vol.3 , pp. 1433-1452
    • Candès, E.J.1
  • 10
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207-1223 (2006)
    • (2006) Commun. Pure Appl. Math. , vol.59 , Issue.8 , pp. 1207-1223
    • Candès, E.J.1    Romberg, J.K.2    Tao, T.3
  • 11
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inform. Theory 51(12), 4203-4215 (2005)
    • (2005) IEEE Trans. Inform. Theory , vol.51 , Issue.12 , pp. 4203-4215
    • Candès, E.J.1    Tao, T.2
  • 13
    • 65749110333 scopus 로고    scopus 로고
    • Subspace pursuit for compressive sensing signal reconstruction
    • Dai,W.,Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inform. Theory 55(5), 2230-2249 (2009)
    • (2009) IEEE Trans. Inform. Theory , vol.55 , Issue.5 , pp. 2230-2249
    • Dai, W.1    Milenkovic, O.2
  • 15
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289-1306 (2006)
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.L.1
  • 16
    • 33744552752 scopus 로고    scopus 로고
    • For most large underdetermined systems of equations, the minimal l1-norm nearsolution approximates the sparsest near-solution
    • Donoho, D.L.: For most large underdetermined systems of equations, the minimal l1-norm nearsolution approximates the sparsest near-solution. Commun. Pure Appl. Math. 59(7), 907-934 (2006)
    • (2006) Commun. Pure Appl. Math. , vol.59 , Issue.7 , pp. 907-934
    • Donoho, D.L.1
  • 17
    • 33646479497 scopus 로고    scopus 로고
    • High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension
    • Donoho, D.L.: High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension. Discrete Comput. Geom. 35(4), 617-652 (2006)
    • (2006) Discrete Comput. Geom. , vol.35 , Issue.4 , pp. 617-652
    • Donoho, D.L.1
  • 18
    • 22144488449 scopus 로고    scopus 로고
    • Sparse nonnegative solution of underdetermined linear equations by linear programming
    • electronic
    • Donoho, D.L., Tanner, J.: Sparse nonnegative solution of underdetermined linear equations by linear programming. Proc. Natl. Acad. Sci. USA 102(27), 9446-9451 (2005) (electronic)
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , Issue.27 , pp. 9446-9451
    • Donoho, D.L.1    Tanner, J.2
  • 19
    • 55349134896 scopus 로고    scopus 로고
    • Fast solution of l1 minimization problems when the solution may be sparse
    • Donoho, D.L., Tsaig, Y.: Fast solution of l1 minimization problems when the solution may be sparse. IEEE Trans. Inform. Theory 54(11), 4789-4812 (2008)
    • (2008) IEEE Trans. Inform. Theory , vol.54 , Issue.11 , pp. 4789-4812
    • Donoho, D.L.1    Tsaig, Y.2
  • 20
    • 84856938223 scopus 로고    scopus 로고
    • Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit
    • Donoho, D.L., Tsaig, Y., Drori, I., Stark, J.L.: Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit. IEEE Trans. Inform. Theory 58(2), 1094-1121 (2012)
    • (2012) IEEE Trans. Inform. Theory , vol.58 , Issue.2 , pp. 1094-1121
    • Donoho, D.L.1    Tsaig, Y.2    Drori, I.3    Stark, J.L.4
  • 21
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
    • Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Select. Topics Signal Process. 1(4), 586-597 (2007)
    • (2007) IEEE Select. Topics Signal Process. , vol.1 , Issue.4 , pp. 586-597
    • Figueiredo, M.A.T.1    Nowak, R.D.2    Wright, S.J.3
  • 22
    • 84856034474 scopus 로고    scopus 로고
    • Hard thresholding pursuit: An algorithm for compressive sensing
    • Foucart, S.: Hard thresholding pursuit: an algorithm for compressive sensing. SIAM J. Numer. Anal. 49(6), 2543-2563 (2011)
    • (2011) SIAM J. Numer. Anal. , vol.49 , Issue.6 , pp. 2543-2563
    • Foucart, S.1
  • 26
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • Mallat, S., Zhang, Z.:Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397-3415 (1993)
    • (1993) IEEE Trans. Signal Process. , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 27
    • 79959718248 scopus 로고    scopus 로고
    • High performance and scalable radix sorting: A case study of implementing dynamic parallelism for GPU computing
    • Merrill, D., Grimshaw, A.: High performance and scalable radix sorting: a case study of implementing dynamic parallelism for GPU computing. Parallel Process. Lett. 21(02), 245-272 (2011)
    • (2011) Parallel Process. Lett. , vol.21 , Issue.2 , pp. 245-272
    • Merrill, D.1    Grimshaw, A.2
  • 29
    • 0029291966 scopus 로고
    • Sparse approximate solutions to linear systems
    • Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227-234 (1995)
    • (1995) SIAM J. Comput. , vol.24 , Issue.2 , pp. 227-234
    • Natarajan, B.K.1
  • 30
    • 62749175137 scopus 로고    scopus 로고
    • CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
    • Needell, D., Tropp, J.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301-321 (2009)
    • (2009) Appl. Comput. Harmon. Anal. , vol.26 , Issue.3 , pp. 301-321
    • Needell, D.1    Tropp, J.2
  • 31
    • 84892650120 scopus 로고    scopus 로고
    • NVIDIA: Cuda toolkit 4.0 (2011). http://developer.nvidia.com/cuda- toolkit-40
    • (2011)
  • 32
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inform. Theory 50(10), 2231-2242 (2004)
    • (2004) IEEE Trans. Inform. Theory , vol.50 , Issue.10 , pp. 2231-2242
    • Tropp, J.A.1
  • 33
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inform. Theory 53(12), 4655-4666 (2007)
    • (2007) IEEE Trans. Inform. Theory , vol.53 , Issue.12 , pp. 4655-4666
    • Tropp, J.A.1    Gilbert, A.C.2
  • 35
    • 84977895355 scopus 로고    scopus 로고
    • Bregman iterative algorithms for 1-minimization with applications to compressed sensing
    • Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for 1-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143-168 (2008)
    • (2008) SIAM J. Imaging Sci. , vol.1 , Issue.1 , pp. 143-168
    • Yin, W.1    Osher, S.2    Goldfarb, D.3    Darbon, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.