메뉴 건너뛰기




Volumn 37, Issue 23, 2013, Pages 9643-9651

Application of seasonal SVR with chaotic gravitational search algorithm in electricity forecasting

Author keywords

Chaotic gravitational search algorithm (CGSA); Electricity forecasting; Seasonal mechanism; Support vector regression (SVR)

Indexed keywords

CHAOTIC LOCAL SEARCHES; ECONOMIC ACTIVITIES; FORECASTING MODELING; FORECASTING PERFORMANCE; GRAVITATIONAL SEARCH ALGORITHMS; OPTIMIZATION ALGORITHMS; SUPPORT VECTOR REGRESSION (SVR); SUPPORT VECTOR REGRESSION MODELS;

EID: 84885960542     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2013.05.016     Document Type: Article
Times cited : (88)

References (44)
  • 1
    • 0035425552 scopus 로고    scopus 로고
    • Short-term hourly load forecasting using time-series modeling with peak load estimation capability
    • Amjady N. Short-term hourly load forecasting using time-series modeling with peak load estimation capability. IEEE Trans. Power Syst. 2001, 16(3):498-505.
    • (2001) IEEE Trans. Power Syst. , vol.16 , Issue.3 , pp. 498-505
    • Amjady, N.1
  • 2
    • 0037505508 scopus 로고    scopus 로고
    • Short-term load forecasting via ARMA model identification including non-Gaussian process considerations
    • Huang S.J., Shih K.R. Short-term load forecasting via ARMA model identification including non-Gaussian process considerations. IEEE Trans. Power Syst. 2003, 18(2):673-679.
    • (2003) IEEE Trans. Power Syst. , vol.18 , Issue.2 , pp. 673-679
    • Huang, S.J.1    Shih, K.R.2
  • 3
    • 0015022169 scopus 로고
    • Short term load forecasting using general exponential smoothing
    • Christianse W.R. Short term load forecasting using general exponential smoothing. IEEE Trans. Power Apparatus Syst. 1971, PAS-90:900-911.
    • (1971) IEEE Trans. Power Apparatus Syst. , vol.90 PAS , pp. 900-911
    • Christianse, W.R.1
  • 4
    • 0026154960 scopus 로고
    • Composite modeling for adaptive short-term load forecasting
    • Park J.H., Park Y.M., Lee K.Y. Composite modeling for adaptive short-term load forecasting. IEEE Trans. Power Syst. 1991, 6:450-457.
    • (1991) IEEE Trans. Power Syst. , vol.6 , pp. 450-457
    • Park, J.H.1    Park, Y.M.2    Lee, K.Y.3
  • 5
  • 6
    • 0142228351 scopus 로고    scopus 로고
    • Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model
    • Al-Hamadi H.M., Soliman S.A. Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model. Electr. Power Syst. Res. 2004, 68(1):47-59.
    • (2004) Electr. Power Syst. Res. , vol.68 , Issue.1 , pp. 47-59
    • Al-Hamadi, H.M.1    Soliman, S.A.2
  • 7
    • 0032205039 scopus 로고    scopus 로고
    • The impact of temperature forecast uncertainty on Bayesian load forecasting
    • Douglas A.P., Breipohl A.M., Lee F.N., Adapa R. The impact of temperature forecast uncertainty on Bayesian load forecasting. IEEE Trans. Power Syst. 1998, 13:1507-1513.
    • (1998) IEEE Trans. Power Syst. , vol.13 , pp. 1507-1513
    • Douglas, A.P.1    Breipohl, A.M.2    Lee, F.N.3    Adapa, R.4
  • 8
    • 0029356764 scopus 로고
    • Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems
    • Kim K.H., Park J.K., Hwang K.J., Kim S.H. Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems. IEEE Trans. Power Syst. 1995, 10(3):1534-1539.
    • (1995) IEEE Trans. Power Syst. , vol.10 , Issue.3 , pp. 1534-1539
    • Kim, K.H.1    Park, J.K.2    Hwang, K.J.3    Kim, S.H.4
  • 9
    • 36348985409 scopus 로고    scopus 로고
    • Using adaptive network based fuzzy inference system to forecast regional electricity loads
    • Ying L.C., Pan M.C. Using adaptive network based fuzzy inference system to forecast regional electricity loads. Energy Convers. Manage. 2008, 49:205-211.
    • (2008) Energy Convers. Manage. , vol.49 , pp. 205-211
    • Ying, L.C.1    Pan, M.C.2
  • 10
    • 0002715074 scopus 로고    scopus 로고
    • Forecasting the short-term demand for electricity - do neural networks stand a better chance?
    • Darbellay G.A., Slama M. Forecasting the short-term demand for electricity - do neural networks stand a better chance?. Int. J. Forecast. 2000, 16:71-83.
    • (2000) Int. J. Forecast. , vol.16 , pp. 71-83
    • Darbellay, G.A.1    Slama, M.2
  • 11
    • 1442265531 scopus 로고    scopus 로고
    • Short-term hourly load forecasting using abductive networks
    • Abdel-Aal R.E. Short-term hourly load forecasting using abductive networks. IEEE Trans. Power Syst. 2004, 19:164-173.
    • (2004) IEEE Trans. Power Syst. , vol.19 , pp. 164-173
    • Abdel-Aal, R.E.1
  • 12
    • 0034822542 scopus 로고    scopus 로고
    • Nonlinear modelling and support vector machines
    • Proceeding of IEEE Instrumentation and Measurement Technology Conference
    • J.A.K. Suykens, Nonlinear modelling and support vector machines, in: Proceeding of IEEE Instrumentation and Measurement Technology Conference, 2001, pp. 287-294.
    • (2001) , pp. 287-294
    • Suykens, J.A.K.1
  • 14
    • 42949150359 scopus 로고    scopus 로고
    • Study of hourly and daily solar irradiation forecast using diagonal recurrent wavelet neural networks
    • Cao J., Lin X. Study of hourly and daily solar irradiation forecast using diagonal recurrent wavelet neural networks. Energy Convers. Manage. 2008, 49:1396-1406.
    • (2008) Energy Convers. Manage. , vol.49 , pp. 1396-1406
    • Cao, J.1    Lin, X.2
  • 15
    • 38649123300 scopus 로고    scopus 로고
    • Short-term forecasting of Jordanian electricity demand using particle swarm optimization
    • El-Telbany M., El-Karmi F. Short-term forecasting of Jordanian electricity demand using particle swarm optimization. Electr. Power Syst. Res. 2008, 78:425-433.
    • (2008) Electr. Power Syst. Res. , vol.78 , pp. 425-433
    • El-Telbany, M.1    El-Karmi, F.2
  • 16
    • 67650639040 scopus 로고    scopus 로고
    • Hybrid evolutionary algorithms in a SVR-based electric load forecasting model
    • Hong W.C. Hybrid evolutionary algorithms in a SVR-based electric load forecasting model. Int. J. Electr. Power Energy Syst. 2009, 31:409-417.
    • (2009) Int. J. Electr. Power Energy Syst. , vol.31 , pp. 409-417
    • Hong, W.C.1
  • 17
    • 55749112476 scopus 로고    scopus 로고
    • Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
    • Hong W.C. Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model. Energy Convers. Manage. 2009, 50:105-117.
    • (2009) Energy Convers. Manage. , vol.50 , pp. 105-117
    • Hong, W.C.1
  • 18
    • 58249135669 scopus 로고    scopus 로고
    • Electric load forecasting by support vector model
    • Hong W.C. Electric load forecasting by support vector model. Appl. Math. Model. 2009, 33:2444-2454.
    • (2009) Appl. Math. Model. , vol.33 , pp. 2444-2454
    • Hong, W.C.1
  • 19
    • 77958467490 scopus 로고    scopus 로고
    • Application of chaotic ant swarm optimization in electric load forecasting
    • Hong W.C. Application of chaotic ant swarm optimization in electric load forecasting. Energy Policy 2010, 38:5830-5839.
    • (2010) Energy Policy , vol.38 , pp. 5830-5839
    • Hong, W.C.1
  • 20
    • 18144394762 scopus 로고    scopus 로고
    • Forecasting regional electric load based on recurrent support vector machines with genetic algorithms
    • Pai P.F., Hong W.C. Forecasting regional electric load based on recurrent support vector machines with genetic algorithms. Electr. Power Syst. Res. 2005, 74:417-425.
    • (2005) Electr. Power Syst. Res. , vol.74 , pp. 417-425
    • Pai, P.F.1    Hong, W.C.2
  • 21
    • 18544377981 scopus 로고    scopus 로고
    • Support vector machines with simulated annealing algorithms in electricity load forecasting
    • Pai P.F., Hong W.C. Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Convers. Manage. 2005, 46:2669-2688.
    • (2005) Energy Convers. Manage. , vol.46 , pp. 2669-2688
    • Pai, P.F.1    Hong, W.C.2
  • 22
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 2004, 17:113-126.
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 23
    • 78751627947 scopus 로고    scopus 로고
    • SVR with hybrid chaotic genetic algorithms for tourism demand forecasting
    • Hong W.C., Dong Y., Chen L.Y., Wei S.Y. SVR with hybrid chaotic genetic algorithms for tourism demand forecasting. Appl. Soft Comput. 2011, 11:1881-1890.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 1881-1890
    • Hong, W.C.1    Dong, Y.2    Chen, L.Y.3    Wei, S.Y.4
  • 24
    • 43049181654 scopus 로고    scopus 로고
    • Rainfall forecasting by technological machine learning models
    • Hong W.C. Rainfall forecasting by technological machine learning models. Appl. Math. Comput. 2008, 200:41-57.
    • (2008) Appl. Math. Comput. , vol.200 , pp. 41-57
    • Hong, W.C.1
  • 26
    • 84855354016 scopus 로고    scopus 로고
    • A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems
    • Shaw B., Mukherjee V., Ghoshal S.P. A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems. Electr. Power Energy Syst. 2012, 35:21-33.
    • (2012) Electr. Power Energy Syst. , vol.35 , pp. 21-33
    • Shaw, B.1    Mukherjee, V.2    Ghoshal, S.P.3
  • 28
    • 80054753142 scopus 로고    scopus 로고
    • Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm
    • Li C., Zhou J. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm. Energy Convers. Manage. 2011, 52:374-381.
    • (2011) Energy Convers. Manage. , vol.52 , pp. 374-381
    • Li, C.1    Zhou, J.2
  • 29
    • 84862797477 scopus 로고    scopus 로고
    • Parameters identification of chaotic system by chaotic gravitational search algorithm
    • Li C., Zhou J., Xiao J., Xiao H. Parameters identification of chaotic system by chaotic gravitational search algorithm. Chaos Solitons Fractals 2012, 45:539-547.
    • (2012) Chaos Solitons Fractals , vol.45 , pp. 539-547
    • Li, C.1    Zhou, J.2    Xiao, J.3    Xiao, H.4
  • 32
    • 33845866875 scopus 로고    scopus 로고
    • Chaotic particle swarm optimization for economic dispatch considering the generator constraints
    • Cai J., Ma X., Li L., Peng H. Chaotic particle swarm optimization for economic dispatch considering the generator constraints. Energy Convers. Manage. 2007, 48:645-653.
    • (2007) Energy Convers. Manage. , vol.48 , pp. 645-653
    • Cai, J.1    Ma, X.2    Li, L.3    Peng, H.4
  • 33
    • 80052161756 scopus 로고    scopus 로고
    • SVR with hybrid chaotic immune algorithm for seasonal load demand forecasting
    • Hong W.C., Dong Y., Lai C.-Y., Chen L.-Y., Wei S.-Y. SVR with hybrid chaotic immune algorithm for seasonal load demand forecasting. Energies 2011, 4:960-977.
    • (2011) Energies , vol.4 , pp. 960-977
    • Hong, W.C.1    Dong, Y.2    Lai, C.-Y.3    Chen, L.-Y.4    Wei, S.-Y.5
  • 34
    • 79956119798 scopus 로고    scopus 로고
    • Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm
    • Hong W.C. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 2011, 74:2096-2107.
    • (2011) Neurocomputing , vol.74 , pp. 2096-2107
    • Hong, W.C.1
  • 35
    • 80052103053 scopus 로고    scopus 로고
    • Electric load forecasting by seasonal recurrent SVR with chaotic artificial bee colony algorithm
    • Hong W.C. Electric load forecasting by seasonal recurrent SVR with chaotic artificial bee colony algorithm. Energy 2011, 36:5568-5578.
    • (2011) Energy , vol.36 , pp. 5568-5578
    • Hong, W.C.1
  • 36
    • 84865413861 scopus 로고    scopus 로고
    • Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting
    • Zhang W.Y., Hong W.C., Dong Y., Tsai G., Sung J.-T., Fan G. Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting. Energy 2012, 45:850-858.
    • (2012) Energy , vol.45 , pp. 850-858
    • Zhang, W.Y.1    Hong, W.C.2    Dong, Y.3    Tsai, G.4    Sung, J.-T.5    Fan, G.6
  • 38
    • 72649087088 scopus 로고    scopus 로고
    • A trend fixed on firstly and seasonal adjustment model combined with the ε-SVR for short-term forecasting of electricity demand
    • Wang J., Zhu W., Zhang W., Sun D. A trend fixed on firstly and seasonal adjustment model combined with the ε-SVR for short-term forecasting of electricity demand. Energy Policy 2009, 37:4901-4909.
    • (2009) Energy Policy , vol.37 , pp. 4901-4909
    • Wang, J.1    Zhu, W.2    Zhang, W.3    Sun, D.4
  • 39
    • 0017185443 scopus 로고
    • Simple mathematical models with very complicated dynamics
    • May R.M. Simple mathematical models with very complicated dynamics. Nature 1976, 261:459-467.
    • (1976) Nature , vol.261 , pp. 459-467
    • May, R.M.1
  • 40
    • 35148828595 scopus 로고    scopus 로고
    • Electric load forecasting - using kernel based modeling for nonlinear system identification
    • Espinoza M., Suykens J.A.K., Belmans R., De Moor B. Electric load forecasting - using kernel based modeling for nonlinear system identification. IEEE Control Syst. Mag. 2007, 27:43-57.
    • (2007) IEEE Control Syst. Mag. , vol.27 , pp. 43-57
    • Espinoza, M.1    Suykens, J.A.K.2    Belmans, R.3    De Moor, B.4
  • 41
    • 85016309068 scopus 로고    scopus 로고
    • A comparison of seasonal adjustment methods when forecasting intraday volatility
    • Martens K., Chang Y.C., Taylor S. A comparison of seasonal adjustment methods when forecasting intraday volatility. J. Financial Res. 2002, 25:283-299.
    • (2002) J. Financial Res. , vol.25 , pp. 283-299
    • Martens, K.1    Chang, Y.C.2    Taylor, S.3
  • 42
    • 0031498068 scopus 로고    scopus 로고
    • The incremental volatility information in one million foreign exchange quotations
    • Taylor S.J., Xu X. The incremental volatility information in one million foreign exchange quotations. J. Empirical Finance 1997, 4:317-340.
    • (1997) J. Empirical Finance , vol.4 , pp. 317-340
    • Taylor, S.J.1    Xu, X.2
  • 43
    • 0039066490 scopus 로고    scopus 로고
    • DM-dollar volatility: intraday activity patterns, macroeconomic announcements and longer run dependencies
    • Andersen T.G., Bollerslev T. DM-dollar volatility: intraday activity patterns, macroeconomic announcements and longer run dependencies. J. Finance 1998, 53:219-265.
    • (1998) J. Finance , vol.53 , pp. 219-265
    • Andersen, T.G.1    Bollerslev, T.2
  • 44
    • 33644498904 scopus 로고    scopus 로고
    • Forecasting realized volatility using a long- memory stochastic volatility model: estimation, prediction and seasonal adjustment
    • Deo R., Hurvich C., Lu Y. Forecasting realized volatility using a long- memory stochastic volatility model: estimation, prediction and seasonal adjustment. J. Econometrics 2006, 131:29-58.
    • (2006) J. Econometrics , vol.131 , pp. 29-58
    • Deo, R.1    Hurvich, C.2    Lu, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.