-
2
-
-
77949784467
-
Sparse multiple kernel learning for signal processing applications
-
Subrahmanya N, Shin YC (2010) Sparse multiple kernel learning for signal processing applications. IEEE Trans Pattern Anal Mach Intell 32(5): 788-798.
-
(2010)
IEEE Trans Pattern Anal Mach Intell
, vol.32
, Issue.5
, pp. 788-798
-
-
Subrahmanya, N.1
Shin, Y.C.2
-
3
-
-
84863262331
-
Soft subspace clustering with an improved feature weight self-adjustment mechanism
-
Guo G, Chen S, Chen L (2012) Soft subspace clustering with an improved feature weight self-adjustment mechanism. Int J Mach Learn Cybern 3(1): 39-49.
-
(2012)
Int J Mach Learn Cybern
, vol.3
, Issue.1
, pp. 39-49
-
-
Guo, G.1
Chen, S.2
Chen, L.3
-
4
-
-
84857550167
-
Research on search results optimization technology with category features integration
-
Qin Y, Zheng D, Zhao T (2012) Research on search results optimization technology with category features integration. Int J Mach Learn Cybern 3(1): 71-76.
-
(2012)
Int J Mach Learn Cybern
, vol.3
, Issue.1
, pp. 71-76
-
-
Qin, Y.1
Zheng, D.2
Zhao, T.3
-
5
-
-
29144485389
-
Modeling gene expression networks using fuzzy logic
-
Pan D, Jian G, Wurtele ES, Dickerson JA (2005) Modeling gene expression networks using fuzzy logic. IEEE Trans Syst Man Cybern Part B 35(6): 1351-1359.
-
(2005)
IEEE Trans Syst Man Cybern Part B
, vol.35
, Issue.6
, pp. 1351-1359
-
-
Pan, D.1
Jian, G.2
Wurtele, E.S.3
Dickerson, J.A.4
-
6
-
-
77955136689
-
The benefit of group sparsity
-
Huang J, Zhang T (2010) The benefit of group sparsity. Ann Stat 38: 1978-2004.
-
(2010)
Ann Stat
, vol.38
, pp. 1978-2004
-
-
Huang, J.1
Zhang, T.2
-
7
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Leran Res 3: 1157-1182.
-
(2003)
J Mach Leran Res
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
9
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Royal Stat Soc Ser B 58(1): 267-288.
-
(1996)
J Royal Stat Soc Ser B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
11
-
-
0141836275
-
Adaptive sparseness for supervised learning
-
Figueiredo MAT (2003) Adaptive sparseness for supervised learning. IEEE Trans Pattern Anal Mach Intell 25(9): 1150-1159.
-
(2003)
IEEE Trans Pattern Anal Mach Intell
, vol.25
, Issue.9
, pp. 1150-1159
-
-
Figueiredo, M.A.T.1
-
12
-
-
2442670435
-
Support vector channel selection in BCI
-
Lal TN, Schroder M, Hinterberger T, Weston J, Bogdan M, Birbaumer N, Scholkopf B (2004) Support vector channel selection in BCI. IEEE Trans Biomed Eng 51(6): 1003-1010.
-
(2004)
IEEE Trans Biomed Eng
, vol.51
, Issue.6
, pp. 1003-1010
-
-
Lal, T.N.1
Schroder, M.2
Hinterberger, T.3
Weston, J.4
Bogdan, M.5
Birbaumer, N.6
Scholkopf, B.7
-
14
-
-
34548232392
-
Input selection and shrinkage in multiresponse linear regression
-
Similä T, Tikka J (2007) Input selection and shrinkage in multiresponse linear regression. Comput Stat Data Anal 52: 406-422.
-
(2007)
Comput Stat Data Anal
, vol.52
, pp. 406-422
-
-
Similä, T.1
Tikka, J.2
-
15
-
-
34547840186
-
Group SCAD regression analysis for microarray time course gene expression data
-
Wang L, Chen G, Li H (2007) Group SCAD regression analysis for microarray time course gene expression data. Bioinformatics 23(12): 1486-1494.
-
(2007)
Bioinformatics
, vol.23
, Issue.12
, pp. 1486-1494
-
-
Wang, L.1
Chen, G.2
Li, H.3
-
16
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Yuan M, Lin YB (2006) Model selection and estimation in regression with grouped variables. J Royal Stat Soc 68: 49-67.
-
(2006)
J Royal Stat Soc
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.B.2
-
18
-
-
34548551168
-
SVM feature selection for classification of SPECT images of Alzheimer's disease using spatial information
-
Stoeckel J, Fung G (2005) SVM feature selection for classification of SPECT images of Alzheimer's disease using spatial information. In: IEEE Conference on Data Mining.
-
(2005)
In: IEEE Conference On Data Mining
-
-
Stoeckel, J.1
Fung, G.2
-
19
-
-
80052253522
-
Convex optimization with sparsity-inducing norms
-
S. Sra, S. Nowozin, and S. J. Wright (Eds.), Cambridge: MIT Press
-
Bach F, Jenatton R, Mairal J, Obozinski G (2011) Convex optimization with sparsity-inducing norms. In: Sra S, Nowozin S, Wright SJ (eds) Optimization for Machine Learning. MIT Press, Cambridge.
-
(2011)
Optimization for Machine Learning
-
-
Bach, F.1
Jenatton, R.2
Mairal, J.3
Obozinski, G.4
-
21
-
-
0007725224
-
Variational relevance vector machines
-
C. Boutilier and M. Goldzmidt (Eds.), California: Morgan Kaufmann
-
Bishop CM, Tipping ME (2000) Variational relevance vector machines. In: Boutilier C, Goldzmidt M (eds) Uncertainty in artificial intelligence. Morgan Kaufmann, California, pp 46-53.
-
(2000)
Uncertainty in Artificial Intelligence
, pp. 46-53
-
-
Bishop, C.M.1
Tipping, M.E.2
-
22
-
-
0001224048
-
Sparse bayesian learning and the relevance vector machine
-
Tipping ME (2001) Sparse bayesian learning and the relevance vector machine. J Mach Leran Res 1(3): 211-244.
-
(2001)
J Mach Leran Res
, vol.1
, Issue.3
, pp. 211-244
-
-
Tipping, M.E.1
-
24
-
-
21844450606
-
Variational message passing
-
Winn J (2005) Variational message passing. J Mach Leran Res 6: 661-694.
-
(2005)
J Mach Leran Res
, vol.6
, pp. 661-694
-
-
Winn, J.1
-
26
-
-
49749103098
-
Automated sensor selection and fusion for monitoring and diagnostics of plunge grinding
-
Subrahmanya N, Shin YC (2008) Automated sensor selection and fusion for monitoring and diagnostics of plunge grinding. J Manufact Sci Eng Trans ASME 130(3): 031014.
-
(2008)
J Manufact Sci Eng Trans ASME
, vol.130
, Issue.3
, pp. 031014
-
-
Subrahmanya, N.1
Shin, Y.C.2
-
27
-
-
38949165049
-
Comparative evaluation of gene-set analysis methods
-
Liu Q, Dinu I, Adewale AJ, Potter JD, Yasui Y (2007) Comparative evaluation of gene-set analysis methods. BMC Bioinformatics 8: 431.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 431
-
-
Liu, Q.1
Dinu, I.2
Adewale, A.J.3
Potter, J.D.4
Yasui, Y.5
|