메뉴 건너뛰기




Volumn 25, Issue 9, 2013, Pages 2450-2485

Exploitation of pairwise class distances for ordinal classification

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84885876083     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00478     Document Type: Letter
Times cited : (31)

References (48)
  • 1
    • 0003752091 scopus 로고
    • Analysis of ordinal categorical data
    • NewYork: Wiley
    • Agresti, A. (1984). Analysis of ordinal categorical data. NewYork: Wiley.
    • (1984)
    • Agresti, A.1
  • 2
    • 84886952627 scopus 로고    scopus 로고
    • Learning SVM ranking functions from user feedback using document metadata and active learning in the biomedical domain
    • J. Fürnkranz & E. Hüllermeier (Eds.), New York: Springer-Verlag
    • Arens, R. (2010). Learning SVM ranking functions from user feedback using document metadata and active learning in the biomedical domain. In J. Fürnkranz & E. Hüllermeier (Eds.), Preference learning (pp. 363-383). New York: Springer-Verlag.
    • (2010) Preference learning , pp. 363-383
    • Arens, R.1
  • 3
    • 36948999941 scopus 로고    scopus 로고
    • UCI machine learning repository
    • Irvine, CA: University of California Irvine
    • Asuncion, A., & Newman, D. (2007). UCI machine learning repository. Irvine, CA: University of California Irvine.
    • (2007)
    • Asuncion, A.1    Newman, D.2
  • 5
    • 84887508039 scopus 로고
    • Pasture production data set
    • Available online at
    • Barker, D. (1995). Pasture production data set. Available online at http://www.cs.waikato.ac.nz/ml/weka/datasets.html
    • (1995)
    • Barker, D.1
  • 7
    • 27744456721 scopus 로고    scopus 로고
    • Modelling ordinal relations with SVMs: An application to objective aesthetic evaluation of breast cancer conservative treatment
    • Cardoso, J., Pinto da Costa, J., & Cardoso, M. (2005). Modelling ordinal relations with SVMs: An application to objective aesthetic evaluation of breast cancer conservative treatment. Neural Networks, 18(5-6), 808-817.
    • (2005) Neural Networks , vol.18 , Issue.5-6 , pp. 808-817
    • Cardoso, J.1    Pinto Da Costa, J.2    Cardoso, M.3
  • 11
    • 31844454295 scopus 로고    scopus 로고
    • Newapproaches to support vector ordinal regression
    • In ICML'05: Proceedings of the 22nd international Conference on Machine Learning, New York: ACM
    • Chu, W., & Keerthi, S. S. (2005). Newapproaches to support vector ordinal regression. In In ICML'05: Proceedings of the 22nd international Conference on Machine Learning (pp. 145-152). New York: ACM.
    • (2005) , pp. 145-152
    • Chu, W.1    Keerthi, S.S.2
  • 12
    • 33847626350 scopus 로고    scopus 로고
    • Support vector ordinal regression
    • Chu, W., & Keerthi, S. S. (2007). Support vector ordinal regression. Neural Computation, 19(3), 792-815.
    • (2007) Neural Computation , vol.19 , Issue.3 , pp. 792-815
    • Chu, W.1    Keerthi, S.S.2
  • 13
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 14
    • 1942515261 scopus 로고    scopus 로고
    • Pranking with ranking
    • T. G. Dieterrich, S. Becker, & Z. Ghahramani (Eds.), Cambridge, MA: MIT Press
    • Crammer, K., & Singer, Y. (2001). Pranking with ranking. In T. G. Dieterrich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14 (pp. 641-647). Cambridge, MA: MIT Press.
    • (2001) Advances in neural information processing systems , vol.14 , pp. 641-647
    • Crammer, K.1    Singer, Y.2
  • 15
    • 14544278410 scopus 로고    scopus 로고
    • Online ranking by projecting
    • Crammer, K., & Singer, Y. (2005). Online ranking by projecting. Neural Computation, 17(1), 145-175.
    • (2005) Neural Computation , vol.17 , Issue.1 , pp. 145-175
    • Crammer, K.1    Singer, Y.2
  • 17
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res., 7, 1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 18
    • 84874197542 scopus 로고    scopus 로고
    • Adaptivemetric learning vector quantization for ordinal classification
    • Fouad, S., & Tino, P. (2012). Adaptivemetric learning vector quantization for ordinal classification. Neural Computation, 24(11), 2825-2851.
    • (2012) Neural Computation , vol.24 , Issue.11 , pp. 2825-2851
    • Fouad, S.1    Tino, P.2
  • 20
    • 0001837148 scopus 로고
    • Acomparison of alternative tests of significance for the problem of m rankings
    • Friedman, M. (1940). Acomparison of alternative tests of significance for the problem of m rankings. Annals of Mathematical Statistics, 11(1), 86-92.
    • (1940) Annals of Mathematical Statistics , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 23
    • 0008371352 scopus 로고    scopus 로고
    • Large margin rank boundaries for ordinal regression
    • A. Smola, P. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Cambridge, MA: MIT Press
    • Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large margin rank boundaries for ordinal regression. In A. Smola, P. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 115-132). Cambridge, MA: MIT Press.
    • (2000) Advances in large margin classifiers , pp. 115-132
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3
  • 24
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu, C.-W., & Lin, C.-J. (2002). A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks, 13(2), 415-425.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 25
    • 77958494866 scopus 로고    scopus 로고
    • Is an ordinal class structure useful in classifier learning? Int
    • Hühn, J. C., & Hüllermeier, E. (2008). Is an ordinal class structure useful in classifier learning? Int. J. Data Mining, Modelling and Management, 1(1), 45-67.
    • (2008) J. Data Mining, Modelling and Management , vol.1 , Issue.1 , pp. 45-67
    • Hühn, J.C.1    Hüllermeier, E.2
  • 26
    • 0003882111 scopus 로고
    • Rank correlation methods
    • 3rd ed, New York: Hafner Press
    • Kendall, M. G. (1962). Rank correlation methods (3rd ed.). New York: Hafner Press.
    • (1962)
    • Kendall, M.G.1
  • 28
    • 84855202615 scopus 로고    scopus 로고
    • A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach
    • Kim, K.-J., & Ahn, H. (2012). A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach. Computers and Operations Research, 39(8), 1800-1811.
    • (2012) Computers and Operations Research , vol.39 , Issue.8 , pp. 1800-1811
    • Kim, K.-J.1    Ahn, H.2
  • 29
    • 9444235102 scopus 로고    scopus 로고
    • A cost sensitive technique for ordinal classification problems
    • G. Vouros & T. Panayiotopoulos (Eds.), Berlin: Springer-Verlag
    • Kotsiantis, S. B., & Pintelas, P. E. (2004). A cost sensitive technique for ordinal classification problems. In G. Vouros & T. Panayiotopoulos (Eds.), Methods and applications of artificial intelligence (pp. 220-229). Berlin: Springer-Verlag.
    • (2004) Methods and applications of artificial intelligence , pp. 220-229
    • Kotsiantis, S.B.1    Pintelas, P.E.2
  • 30
    • 33745458393 scopus 로고    scopus 로고
    • Prediction of ordinal classes using regression trees
    • Z. Ras & S. Ohsuga (Eds.), Berlin: Springer-Verlag
    • Kramer, S., Widmer, G., Pfahringer, B., & de Groeve, M. (2010). Prediction of ordinal classes using regression trees. In Z. Ras & S. Ohsuga (Eds.), Foundations of intelligent systems (pp. 665-674). Berlin: Springer-Verlag.
    • (2010) Foundations of intelligent systems , pp. 665-674
    • Kramer, S.1    Widmer, G.2    Pfahringer, B.3    de Groeve, M.4
  • 31
    • 39649107920 scopus 로고    scopus 로고
    • Ordinal regression by extended binary classification
    • B. Schölkopf, J. Platt, & T. Hofmann (Eds.), Cambridge, MA: MIT Press
    • Li, L., & Lin, H.-T. (2007). Ordinal regression by extended binary classification. In B. Schölkopf, J. Platt, & T. Hofmann (Eds.), Advances in neural information processing systems, 19 (pp. 865-872). Cambridge, MA: MIT Press.
    • (2007) Advances in neural information processing systems , vol.19 , pp. 865-872
    • Li, L.1    Lin, H.-T.2
  • 32
    • 0034274591 scopus 로고    scopus 로고
    • Acomparison of prediction accuracy, complexity, and training time of thirty-three old and new classification Algorithms
    • Lim, T.-S., Loh, W.-Y., & Shih, Y.-S. (2000). Acomparison of prediction accuracy, complexity, and training time of thirty-three old and new classification Algorithms. Machine Learning, 40, 203-228.
    • (2000) Machine Learning , vol.40 , pp. 203-228
    • Lim, T.-S.1    Loh, W.-Y.2    Shih, Y.-S.3
  • 33
    • 84861176005 scopus 로고    scopus 로고
    • Reduction from cost-sensitive ordinal ranking to weighted binary classification
    • Lin, H.-T., & Li, L. (2012). Reduction from cost-sensitive ordinal ranking to weighted binary classification. Neural Computation, 24(5), 1329-1367.
    • (2012) Neural Computation , vol.24 , Issue.5 , pp. 1329-1367
    • Lin, H.-T.1    Li, L.2
  • 34
    • 0000335983 scopus 로고
    • Bayesian methods for backpropagation networks
    • E. Domany, J. L. van Hemmen, & K. Schulten (Eds.), New York: Springer-Verlag
    • Mackay, D. J. C. (1994). Bayesian methods for backpropagation networks. In E. Domany, J. L. van Hemmen, & K. Schulten (Eds.), Models of neural networks III (pp. 211-254). New York: Springer-Verlag.
    • (1994) Models of neural networks III , pp. 211-254
    • Mackay, D.J.C.1
  • 36
    • 0003611509 scopus 로고    scopus 로고
    • Bayesian learning for neural networks
    • New York: Springer-Verlag
    • Neal, R. M. (1996). Bayesian learning for neural networks. New York: Springer-Verlag.
    • (1996)
    • Neal, R.M.1
  • 38
    • 39649085857 scopus 로고    scopus 로고
    • The unimodal model for the classification of ordinal data
    • Pinto da Costa, J. F., Alonso, H., & Cardoso, J. S. (2008). The unimodal model for the classification of ordinal data. Neural Networks, 21, 78-91.
    • (2008) Neural Networks , vol.21 , pp. 78-91
    • Pinto Da Costa, J.F.1    Alonso, H.2    Cardoso, J.S.3
  • 41
    • 0003408420 scopus 로고    scopus 로고
    • Learning with kernels: Support vector machines, regularization, optimization, and beyond
    • Cambridge, MA: MIT Press
    • Schölkopf, B., & Smola, A. J. (2001). Learning with kernels: Support vector machines, regularization, optimization, and beyond. Cambridge, MA: MIT Press.
    • (2001)
    • Schölkopf, B.1    Smola, A.J.2
  • 42
    • 85156208493 scopus 로고    scopus 로고
    • Ranking with large margin principle: Two approaches
    • S. Becker, S. Thrün, & K. Obermeyer (Eds.), Cambridge, MA: MIT Press
    • Shashua, A., & Levin, A. (2002). Ranking with large margin principle: Two approaches. In S. Becker, S. Thrün, & K. Obermeyer (Eds.), Advances in neural information processing systems, 15 (pp. 937-944). Cambridge, MA: MIT Press.
    • (2002) Advances in neural information processing systems , vol.15 , pp. 937-944
    • Shashua, A.1    Levin, A.2
  • 43
    • 84857518264 scopus 로고    scopus 로고
    • Machine learning data set repository
    • Sonnenburg, D. S. (2011). Machine learning data set repository. http://midata.org
    • (2011)
    • Sonnenburg, D.S.1
  • 45
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik, V. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10(5), 988-999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.1
  • 46
    • 84856733680 scopus 로고    scopus 로고
    • Learning partial ordinal class memberships with kernel-based proportional odds models
    • Verwaeren, J., Waegeman, W., & De Baets, B. (2012). Learning partial ordinal class memberships with kernel-based proportional odds models. Computational Statistics and Data Analysis, 56(4), 928-942.
    • (2012) Computational Statistics and Data Analysis , vol.56 , Issue.4 , pp. 928-942
    • Verwaeren, J.1    Waegeman, W.2    De Baets, B.3
  • 48
    • 84857532467 scopus 로고    scopus 로고
    • A survey on ROC-based ordinal regression
    • J. Fürnkranz & E. Hüllermeier (Eds.), Berlin: Springer-Verlag
    • Waegeman, W., & De Baets, B. (2011). A survey on ROC-based ordinal regression. In J. Fürnkranz & E. Hüllermeier (Eds.), Preference learning (pp. 127-154). Berlin: Springer-Verlag.
    • (2011) Preference learning , pp. 127-154
    • Waegeman, W.1    De Baets, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.