-
1
-
-
0003752091
-
Analysis of ordinal categorical data
-
NewYork: Wiley
-
Agresti, A. (1984). Analysis of ordinal categorical data. NewYork: Wiley.
-
(1984)
-
-
Agresti, A.1
-
2
-
-
84886952627
-
Learning SVM ranking functions from user feedback using document metadata and active learning in the biomedical domain
-
J. Fürnkranz & E. Hüllermeier (Eds.), New York: Springer-Verlag
-
Arens, R. (2010). Learning SVM ranking functions from user feedback using document metadata and active learning in the biomedical domain. In J. Fürnkranz & E. Hüllermeier (Eds.), Preference learning (pp. 363-383). New York: Springer-Verlag.
-
(2010)
Preference learning
, pp. 363-383
-
-
Arens, R.1
-
3
-
-
36948999941
-
UCI machine learning repository
-
Irvine, CA: University of California Irvine
-
Asuncion, A., & Newman, D. (2007). UCI machine learning repository. Irvine, CA: University of California Irvine.
-
(2007)
-
-
Asuncion, A.1
Newman, D.2
-
4
-
-
77949512941
-
Evaluation measures for ordinal regression
-
ISDA'09, San Mateo, CA: IEEE Computer Society
-
Baccianella, S., Esuli, A., & Sebastiani, F. (2009). Evaluation measures for ordinal regression. In Proceedings of the Ninth International Conference on Intelligent Systems Design and Applications (ISDA'09) (pp. 283-287). San Mateo, CA: IEEE Computer Society.
-
(2009)
Proceedings of the Ninth International Conference on Intelligent Systems Design and Applications
, pp. 283-287
-
-
Baccianella, S.1
Esuli, A.2
Sebastiani, F.3
-
5
-
-
84887508039
-
Pasture production data set
-
Available online at
-
Barker, D. (1995). Pasture production data set. Available online at http://www.cs.waikato.ac.nz/ml/weka/datasets.html
-
(1995)
-
-
Barker, D.1
-
7
-
-
27744456721
-
Modelling ordinal relations with SVMs: An application to objective aesthetic evaluation of breast cancer conservative treatment
-
Cardoso, J., Pinto da Costa, J., & Cardoso, M. (2005). Modelling ordinal relations with SVMs: An application to objective aesthetic evaluation of breast cancer conservative treatment. Neural Networks, 18(5-6), 808-817.
-
(2005)
Neural Networks
, vol.18
, Issue.5-6
, pp. 808-817
-
-
Cardoso, J.1
Pinto Da Costa, J.2
Cardoso, M.3
-
8
-
-
84855374161
-
Measuring the performance of ordinal classification
-
Cardoso, J. S., & Sousa, R. (2011). Measuring the performance of ordinal classification. International Journal of Pattern Recognition and Artificial Intelligence, 25(8), 1173-1195.
-
(2011)
International Journal of Pattern Recognition and Artificial Intelligence
, vol.25
, Issue.8
, pp. 1173-1195
-
-
Cardoso, J.S.1
Sousa, R.2
-
11
-
-
31844454295
-
Newapproaches to support vector ordinal regression
-
In ICML'05: Proceedings of the 22nd international Conference on Machine Learning, New York: ACM
-
Chu, W., & Keerthi, S. S. (2005). Newapproaches to support vector ordinal regression. In In ICML'05: Proceedings of the 22nd international Conference on Machine Learning (pp. 145-152). New York: ACM.
-
(2005)
, pp. 145-152
-
-
Chu, W.1
Keerthi, S.S.2
-
12
-
-
33847626350
-
Support vector ordinal regression
-
Chu, W., & Keerthi, S. S. (2007). Support vector ordinal regression. Neural Computation, 19(3), 792-815.
-
(2007)
Neural Computation
, vol.19
, Issue.3
, pp. 792-815
-
-
Chu, W.1
Keerthi, S.S.2
-
13
-
-
34249753618
-
Support-vector networks
-
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
14
-
-
1942515261
-
Pranking with ranking
-
T. G. Dieterrich, S. Becker, & Z. Ghahramani (Eds.), Cambridge, MA: MIT Press
-
Crammer, K., & Singer, Y. (2001). Pranking with ranking. In T. G. Dieterrich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14 (pp. 641-647). Cambridge, MA: MIT Press.
-
(2001)
Advances in neural information processing systems
, vol.14
, pp. 641-647
-
-
Crammer, K.1
Singer, Y.2
-
15
-
-
14544278410
-
Online ranking by projecting
-
Crammer, K., & Singer, Y. (2005). Online ranking by projecting. Neural Computation, 17(1), 145-175.
-
(2005)
Neural Computation
, vol.17
, Issue.1
, pp. 145-175
-
-
Crammer, K.1
Singer, Y.2
-
16
-
-
84857541956
-
A Preliminary study of ordinal metrics to guide a multi-objective evolutionary algorithm
-
ISDA 2011, San Mateo, CA: IEEE Computer Society
-
Cruz-Ramírez, M., Hervás-Martínez, C., Sánchez-Monedero, J., & Gutiérrez, P. A. (2011). A Preliminary study of ordinal metrics to guide a multi-objective evolutionary algorithm. In Proceedings of the 11th International Conference on Intelligent Systems Design andApplications (ISDA 2011) (pp. 1176-1181). San Mateo, CA: IEEE Computer Society.
-
(2011)
Proceedings of the 11th International Conference on Intelligent Systems Design andApplications
, pp. 1176-1181
-
-
Cruz-Ramírez, M.1
Hervás-Martínez, C.2
Sánchez-Monedero, J.3
Gutiérrez, P.A.4
-
17
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res., 7, 1-30.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
18
-
-
84874197542
-
Adaptivemetric learning vector quantization for ordinal classification
-
Fouad, S., & Tino, P. (2012). Adaptivemetric learning vector quantization for ordinal classification. Neural Computation, 24(11), 2825-2851.
-
(2012)
Neural Computation
, vol.24
, Issue.11
, pp. 2825-2851
-
-
Fouad, S.1
Tino, P.2
-
20
-
-
0001837148
-
Acomparison of alternative tests of significance for the problem of m rankings
-
Friedman, M. (1940). Acomparison of alternative tests of significance for the problem of m rankings. Annals of Mathematical Statistics, 11(1), 86-92.
-
(1940)
Annals of Mathematical Statistics
, vol.11
, Issue.1
, pp. 86-92
-
-
Friedman, M.1
-
21
-
-
84873987310
-
Ordinal and nominal classification of wind speed from synoptic pressure patterns
-
Gutiérrez, P., Salcedo-Sanz, S., Hervás-Martínez, C., Carro-Calvo, L., Sánchez-Monedero, J., & Prieto, L. (2013). Ordinal and nominal classification of wind speed from synoptic pressure patterns. Engineering Applications of Artificial Intelligence, 26(3), 1008-1015.
-
(2013)
Engineering Applications of Artificial Intelligence
, vol.26
, Issue.3
, pp. 1008-1015
-
-
Gutiérrez, P.1
Salcedo-Sanz, S.2
Hervás-Martínez, C.3
Carro-Calvo, L.4
Sánchez-Monedero, J.5
Prieto, L.6
-
22
-
-
76749092270
-
The WEKA data mining software: An update
-
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. Special Interest Group on Knowledge Discovery and Data Mining Explorer Newsletter, 11, 10-18.
-
(2009)
Special Interest Group on Knowledge Discovery and Data Mining Explorer Newsletter
, vol.11
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
23
-
-
0008371352
-
Large margin rank boundaries for ordinal regression
-
A. Smola, P. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Cambridge, MA: MIT Press
-
Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large margin rank boundaries for ordinal regression. In A. Smola, P. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 115-132). Cambridge, MA: MIT Press.
-
(2000)
Advances in large margin classifiers
, pp. 115-132
-
-
Herbrich, R.1
Graepel, T.2
Obermayer, K.3
-
24
-
-
0036505670
-
A comparison of methods for multi-class support vector machines
-
Hsu, C.-W., & Lin, C.-J. (2002). A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks, 13(2), 415-425.
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.2
, pp. 415-425
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
25
-
-
77958494866
-
Is an ordinal class structure useful in classifier learning? Int
-
Hühn, J. C., & Hüllermeier, E. (2008). Is an ordinal class structure useful in classifier learning? Int. J. Data Mining, Modelling and Management, 1(1), 45-67.
-
(2008)
J. Data Mining, Modelling and Management
, vol.1
, Issue.1
, pp. 45-67
-
-
Hühn, J.C.1
Hüllermeier, E.2
-
26
-
-
0003882111
-
Rank correlation methods
-
3rd ed, New York: Hafner Press
-
Kendall, M. G. (1962). Rank correlation methods (3rd ed.). New York: Hafner Press.
-
(1962)
-
-
Kendall, M.G.1
-
27
-
-
0001892558
-
Instance-based prediction of realvalued attributes
-
Kibler, D. F., Aha, D. W., & Albert, M. K. (1989). Instance-based prediction of realvalued attributes. Computational Intelligence, 5, 51.
-
(1989)
Computational Intelligence
, vol.5
, pp. 51
-
-
Kibler, D.F.1
Aha, D.W.2
Albert, M.K.3
-
28
-
-
84855202615
-
A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach
-
Kim, K.-J., & Ahn, H. (2012). A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach. Computers and Operations Research, 39(8), 1800-1811.
-
(2012)
Computers and Operations Research
, vol.39
, Issue.8
, pp. 1800-1811
-
-
Kim, K.-J.1
Ahn, H.2
-
29
-
-
9444235102
-
A cost sensitive technique for ordinal classification problems
-
G. Vouros & T. Panayiotopoulos (Eds.), Berlin: Springer-Verlag
-
Kotsiantis, S. B., & Pintelas, P. E. (2004). A cost sensitive technique for ordinal classification problems. In G. Vouros & T. Panayiotopoulos (Eds.), Methods and applications of artificial intelligence (pp. 220-229). Berlin: Springer-Verlag.
-
(2004)
Methods and applications of artificial intelligence
, pp. 220-229
-
-
Kotsiantis, S.B.1
Pintelas, P.E.2
-
30
-
-
33745458393
-
Prediction of ordinal classes using regression trees
-
Z. Ras & S. Ohsuga (Eds.), Berlin: Springer-Verlag
-
Kramer, S., Widmer, G., Pfahringer, B., & de Groeve, M. (2010). Prediction of ordinal classes using regression trees. In Z. Ras & S. Ohsuga (Eds.), Foundations of intelligent systems (pp. 665-674). Berlin: Springer-Verlag.
-
(2010)
Foundations of intelligent systems
, pp. 665-674
-
-
Kramer, S.1
Widmer, G.2
Pfahringer, B.3
de Groeve, M.4
-
31
-
-
39649107920
-
Ordinal regression by extended binary classification
-
B. Schölkopf, J. Platt, & T. Hofmann (Eds.), Cambridge, MA: MIT Press
-
Li, L., & Lin, H.-T. (2007). Ordinal regression by extended binary classification. In B. Schölkopf, J. Platt, & T. Hofmann (Eds.), Advances in neural information processing systems, 19 (pp. 865-872). Cambridge, MA: MIT Press.
-
(2007)
Advances in neural information processing systems
, vol.19
, pp. 865-872
-
-
Li, L.1
Lin, H.-T.2
-
32
-
-
0034274591
-
Acomparison of prediction accuracy, complexity, and training time of thirty-three old and new classification Algorithms
-
Lim, T.-S., Loh, W.-Y., & Shih, Y.-S. (2000). Acomparison of prediction accuracy, complexity, and training time of thirty-three old and new classification Algorithms. Machine Learning, 40, 203-228.
-
(2000)
Machine Learning
, vol.40
, pp. 203-228
-
-
Lim, T.-S.1
Loh, W.-Y.2
Shih, Y.-S.3
-
33
-
-
84861176005
-
Reduction from cost-sensitive ordinal ranking to weighted binary classification
-
Lin, H.-T., & Li, L. (2012). Reduction from cost-sensitive ordinal ranking to weighted binary classification. Neural Computation, 24(5), 1329-1367.
-
(2012)
Neural Computation
, vol.24
, Issue.5
, pp. 1329-1367
-
-
Lin, H.-T.1
Li, L.2
-
34
-
-
0000335983
-
Bayesian methods for backpropagation networks
-
E. Domany, J. L. van Hemmen, & K. Schulten (Eds.), New York: Springer-Verlag
-
Mackay, D. J. C. (1994). Bayesian methods for backpropagation networks. In E. Domany, J. L. van Hemmen, & K. Schulten (Eds.), Models of neural networks III (pp. 211-254). New York: Springer-Verlag.
-
(1994)
Models of neural networks III
, pp. 211-254
-
-
Mackay, D.J.C.1
-
36
-
-
0003611509
-
Bayesian learning for neural networks
-
New York: Springer-Verlag
-
Neal, R. M. (1996). Bayesian learning for neural networks. New York: Springer-Verlag.
-
(1996)
-
-
Neal, R.M.1
-
37
-
-
84857548598
-
Ordinal classification of depression spatial hot-spots of prevalence
-
San Mateo, CA: IEEE Computer Society
-
Perez-Ortiz, M., Gutierrez, P. A., Garcia-Alonso, C., Salvador-Carulla, L., Salinas-Perez, J. A., & Hervas-Martinez, C. (2011). Ordinal classification of depression spatial hot-spots of prevalence. In Proceedings of the 11th International Conference on Intelligent Systems Design and Applications (ISDA) (pp. 1170-1175). San Mateo, CA: IEEE Computer Society.
-
(2011)
Proceedings of the 11th International Conference on Intelligent Systems Design and Applications (ISDA)
, pp. 1170-1175
-
-
Perez-Ortiz, M.1
Gutierrez, P.A.2
Garcia-Alonso, C.3
Salvador-Carulla, L.4
Salinas-Perez, J.A.5
Hervas-Martinez, C.6
-
38
-
-
39649085857
-
The unimodal model for the classification of ordinal data
-
Pinto da Costa, J. F., Alonso, H., & Cardoso, J. S. (2008). The unimodal model for the classification of ordinal data. Neural Networks, 21, 78-91.
-
(2008)
Neural Networks
, vol.21
, pp. 78-91
-
-
Pinto Da Costa, J.F.1
Alonso, H.2
Cardoso, J.S.3
-
39
-
-
45349092533
-
A fast algorithm for learning a ranking function fromlarge-scale data sets
-
Raykar, V. C., Duraiswami, R., & Krishnapuram, B. (2008). A fast algorithm for learning a ranking function fromlarge-scale data sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 1158-1170.
-
(2008)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.30
, pp. 1158-1170
-
-
Raykar, V.C.1
Duraiswami, R.2
Krishnapuram, B.3
-
40
-
-
80053575925
-
Weighting efficient accuracy and minimum sensitivity for evolving multiclass classifiers
-
Sánchez-Monedero, J., Gutiérrez, P. A., Fernández-Navarro, F., & Hervás-Martínez, C. (2011). Weighting efficient accuracy and minimum sensitivity for evolving multiclass classifiers. Neural Processing Letters, 34(2), 101-116.
-
(2011)
Neural Processing Letters
, vol.34
, Issue.2
, pp. 101-116
-
-
Sánchez-Monedero, J.1
Gutiérrez, P.A.2
Fernández-Navarro, F.3
Hervás-Martínez, C.4
-
41
-
-
0003408420
-
Learning with kernels: Support vector machines, regularization, optimization, and beyond
-
Cambridge, MA: MIT Press
-
Schölkopf, B., & Smola, A. J. (2001). Learning with kernels: Support vector machines, regularization, optimization, and beyond. Cambridge, MA: MIT Press.
-
(2001)
-
-
Schölkopf, B.1
Smola, A.J.2
-
42
-
-
85156208493
-
Ranking with large margin principle: Two approaches
-
S. Becker, S. Thrün, & K. Obermeyer (Eds.), Cambridge, MA: MIT Press
-
Shashua, A., & Levin, A. (2002). Ranking with large margin principle: Two approaches. In S. Becker, S. Thrün, & K. Obermeyer (Eds.), Advances in neural information processing systems, 15 (pp. 937-944). Cambridge, MA: MIT Press.
-
(2002)
Advances in neural information processing systems
, vol.15
, pp. 937-944
-
-
Shashua, A.1
Levin, A.2
-
43
-
-
84857518264
-
Machine learning data set repository
-
Sonnenburg, D. S. (2011). Machine learning data set repository. http://midata.org
-
(2011)
-
-
Sonnenburg, D.S.1
-
44
-
-
77951766869
-
Kernel discriminant learning for ordinal regression
-
Sun, B.-Y., Li, J., Wu, D. D., Zhang, X.-M., & Li, W.-B. (2010). Kernel discriminant learning for ordinal regression. IEEE Transactions on Knowledge and Data Engineering, 22(6), 906-910.
-
(2010)
IEEE Transactions on Knowledge and Data Engineering
, vol.22
, Issue.6
, pp. 906-910
-
-
Sun, B.-Y.1
Li, J.2
Wu, D.D.3
Zhang, X.-M.4
Li, W.-B.5
-
45
-
-
0032594959
-
An overview of statistical learning theory
-
Vapnik, V. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10(5), 988-999.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.5
, pp. 988-999
-
-
Vapnik, V.1
-
46
-
-
84856733680
-
Learning partial ordinal class memberships with kernel-based proportional odds models
-
Verwaeren, J., Waegeman, W., & De Baets, B. (2012). Learning partial ordinal class memberships with kernel-based proportional odds models. Computational Statistics and Data Analysis, 56(4), 928-942.
-
(2012)
Computational Statistics and Data Analysis
, vol.56
, Issue.4
, pp. 928-942
-
-
Verwaeren, J.1
Waegeman, W.2
De Baets, B.3
-
47
-
-
84857518260
-
An ensemble of weighted support vector machines for ordinal regression
-
Waegeman, W., & Boullart, L. (2009). An ensemble of weighted support vector machines for ordinal regression. International Journal of Computer Systems Science and Engineering, 3(1), 47-51.
-
(2009)
International Journal of Computer Systems Science and Engineering
, vol.3
, Issue.1
, pp. 47-51
-
-
Waegeman, W.1
Boullart, L.2
-
48
-
-
84857532467
-
A survey on ROC-based ordinal regression
-
J. Fürnkranz & E. Hüllermeier (Eds.), Berlin: Springer-Verlag
-
Waegeman, W., & De Baets, B. (2011). A survey on ROC-based ordinal regression. In J. Fürnkranz & E. Hüllermeier (Eds.), Preference learning (pp. 127-154). Berlin: Springer-Verlag.
-
(2011)
Preference learning
, pp. 127-154
-
-
Waegeman, W.1
De Baets, B.2
|