-
2
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. (Pubitemid 126724382)
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
34249753618
-
Support vector networks
-
Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273-297.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
8
-
-
84950461478
-
Estimating the error rate of a prediction rule: Improvement on cross-validation
-
Efron, B. (1983). Estimating the error rate of a prediction rule: Improvement on cross-validation. Journal of the American Statistical Association, 78, 316-331.
-
(1983)
Journal of the American Statistical Association
, vol.78
, pp. 316-331
-
-
Efron, B.1
-
12
-
-
18744413287
-
Estimating misclassification error with small samples via bootstrap cross-validation
-
DOI 10.1093/bioinformatics/bti294
-
Fu, W. J., Carroll, R. J., & Wang, S. (2005). Estimating misclassification error with small samples via bootstrap crossvalidation. Bioinformatics, 21, 1979-1986. (Pubitemid 40668035)
-
(2005)
Bioinformatics
, vol.21
, Issue.9
, pp. 1979-1986
-
-
Fu, W.J.1
Carroll, R.J.2
Wang, S.3
-
13
-
-
0039136604
-
Note on free lunches and cross-validation
-
Goutte, C. (1997). Note on free lunches and cross-validation. Neural Computation, 9, 1211-1215.
-
(1997)
Neural Computation
, vol.9
, pp. 1211-1215
-
-
Goutte, C.1
-
14
-
-
33845326432
-
Nonparametric estimation of mean-squared prediction error in nested-error regression models
-
DOI 10.1214/009053606000000579
-
Hall, P., & Maiti, T. (2006). Nonparametric estimation of meansquared prediction error in nested-error regression models. Annals of Statistics, 34, 1733-1750. (Pubitemid 44875079)
-
(2006)
Annals of Statistics
, vol.34
, Issue.4
, pp. 1733-1750
-
-
Hall, P.1
Maiti, T.2
-
19
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
Morgan Kaufmann, San Mateo
-
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 2(12), 1137-1143. (Morgan Kaufmann, San Mateo)
-
(1995)
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence
, vol.2
, Issue.12
, pp. 1137-1143
-
-
Kohavi, R.1
-
20
-
-
2442500469
-
Double bootstrap estimation of variance under systematic sampling with probability proportional to size
-
Kuk, A. (1989). Double bootstrap estimation of variance under systematic sampling with probability proportional to size. Journal of Statistical Computing and Simulation, 31, 73-82.
-
(1989)
Journal of Statistical Computing and Simulation
, vol.31
, pp. 73-82
-
-
Kuk, A.1
-
21
-
-
0000335983
-
Bayesian methods for backpropagation networks
-
E. Domany, J. L. van Hemmen, & K. Schulten (Eds.). New York: Springer. Physics of neural network series
-
MacKay, D. J. C. (1996). Bayesian methods for backpropagation networks. In E. Domany, J. L. van Hemmen, & K. Schulten (Eds.), Models of Neural Networks III (pp. 309). New York: Springer. Physics of neural network series.
-
(1996)
Models of Neural Networks III
, pp. 309
-
-
Mackay, D.J.C.1
-
23
-
-
0034336496
-
A neural network for tornado diagnosis
-
Marzban, C. (2000). A neural network for tornado diagnosis. Neural Computing and Applications, 9(2), 133-141.
-
(2000)
Neural Computing and Applications
, vol.9
, Issue.2
, pp. 133-141
-
-
Marzban, C.1
-
28
-
-
0001738242
-
-
Technical report, May, Statistics Department, Stanford University
-
Rao, J. S., & Tibshirani, R. (1997). The out-of-bootstrap method for model averaging and selection. Technical report, May, Statistics Department, Stanford University. Available at http://www-stat.stanford.edu/~tibs/ftp/ outofbootstrap.ps
-
(1997)
The Out-of-bootstrap Method for Model Averaging and Selection
-
-
Rao, J.S.1
Tibshirani, R.2
-
29
-
-
0001595997
-
Neural network classifiers estimate Bayesian a-posteriori probabilities
-
Richard, M. D., & Lippmann, R. P. (1991). Neural network classifiers estimate Bayesian a-posteriori probabilities. Neural Computation, 3, 461-483.
-
(1991)
Neural Computation
, vol.3
, pp. 461-483
-
-
Richard, M.D.1
Lippmann, R.P.2
-
30
-
-
21144474350
-
Linear model selection via crossvalidation
-
Shao, J. (1993). Linear model selection via crossvalidation. Journal of the American Statistical Association, 88(422), 486-494.
-
(1993)
Journal of the American Statistical Association
, vol.88
, Issue.422
, pp. 486-494
-
-
Shao, J.1
-
32
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictions
-
Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society (Series B), 36, 111-147.
-
(1974)
Journal of the Royal Statistical Society (Series B)
, vol.36
, pp. 111-147
-
-
Stone, M.1
-
33
-
-
34250692925
-
Model evaluation based on the sampling distribution of estimated absolute prediction error
-
DOI 10.1093/biomet/asm036
-
Tian, B. L., Cai, T., Goetghebeur, E., &Wei, L. J. (2007). Model evaluationbased on the sampling distribution of estimated absolute prediction error. Biometrika, 94(2), 297-311, Doi: 10.1093/biomet/asm036. (Pubitemid 47351562)
-
(2007)
Biometrika
, vol.94
, Issue.2
, pp. 297-311
-
-
Tian, L.U.1
Cai, T.2
Goetghebeur, E.3
Wei, L.J.4
-
34
-
-
0010491659
-
On the distributional properties of model selection criteria
-
Zhang, P. (1992). On the distributional properties of model selection criteria. Journal of the American Statistical Association, 87(419), 732-737.
-
(1992)
Journal of the American Statistical Association
, vol.87
, Issue.419
, pp. 732-737
-
-
Zhang, P.1
|