메뉴 건너뛰기




Volumn , Issue , 2009, Pages 15-47

Basic statistics and basic AI: Neural networks

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84885827503     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-1-4020-9119-3_2     Document Type: Chapter
Times cited : (16)

References (35)
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 8
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • Efron, B. (1983). Estimating the error rate of a prediction rule: Improvement on cross-validation. Journal of the American Statistical Association, 78, 316-331.
    • (1983) Journal of the American Statistical Association , vol.78 , pp. 316-331
    • Efron, B.1
  • 12
    • 18744413287 scopus 로고    scopus 로고
    • Estimating misclassification error with small samples via bootstrap cross-validation
    • DOI 10.1093/bioinformatics/bti294
    • Fu, W. J., Carroll, R. J., & Wang, S. (2005). Estimating misclassification error with small samples via bootstrap crossvalidation. Bioinformatics, 21, 1979-1986. (Pubitemid 40668035)
    • (2005) Bioinformatics , vol.21 , Issue.9 , pp. 1979-1986
    • Fu, W.J.1    Carroll, R.J.2    Wang, S.3
  • 13
    • 0039136604 scopus 로고    scopus 로고
    • Note on free lunches and cross-validation
    • Goutte, C. (1997). Note on free lunches and cross-validation. Neural Computation, 9, 1211-1215.
    • (1997) Neural Computation , vol.9 , pp. 1211-1215
    • Goutte, C.1
  • 14
    • 33845326432 scopus 로고    scopus 로고
    • Nonparametric estimation of mean-squared prediction error in nested-error regression models
    • DOI 10.1214/009053606000000579
    • Hall, P., & Maiti, T. (2006). Nonparametric estimation of meansquared prediction error in nested-error regression models. Annals of Statistics, 34, 1733-1750. (Pubitemid 44875079)
    • (2006) Annals of Statistics , vol.34 , Issue.4 , pp. 1733-1750
    • Hall, P.1    Maiti, T.2
  • 19
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Morgan Kaufmann, San Mateo
    • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 2(12), 1137-1143. (Morgan Kaufmann, San Mateo)
    • (1995) Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence , vol.2 , Issue.12 , pp. 1137-1143
    • Kohavi, R.1
  • 20
    • 2442500469 scopus 로고
    • Double bootstrap estimation of variance under systematic sampling with probability proportional to size
    • Kuk, A. (1989). Double bootstrap estimation of variance under systematic sampling with probability proportional to size. Journal of Statistical Computing and Simulation, 31, 73-82.
    • (1989) Journal of Statistical Computing and Simulation , vol.31 , pp. 73-82
    • Kuk, A.1
  • 21
    • 0000335983 scopus 로고    scopus 로고
    • Bayesian methods for backpropagation networks
    • E. Domany, J. L. van Hemmen, & K. Schulten (Eds.). New York: Springer. Physics of neural network series
    • MacKay, D. J. C. (1996). Bayesian methods for backpropagation networks. In E. Domany, J. L. van Hemmen, & K. Schulten (Eds.), Models of Neural Networks III (pp. 309). New York: Springer. Physics of neural network series.
    • (1996) Models of Neural Networks III , pp. 309
    • Mackay, D.J.C.1
  • 23
    • 0034336496 scopus 로고    scopus 로고
    • A neural network for tornado diagnosis
    • Marzban, C. (2000). A neural network for tornado diagnosis. Neural Computing and Applications, 9(2), 133-141.
    • (2000) Neural Computing and Applications , vol.9 , Issue.2 , pp. 133-141
    • Marzban, C.1
  • 29
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a-posteriori probabilities
    • Richard, M. D., & Lippmann, R. P. (1991). Neural network classifiers estimate Bayesian a-posteriori probabilities. Neural Computation, 3, 461-483.
    • (1991) Neural Computation , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 30
  • 32
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society (Series B), 36, 111-147.
    • (1974) Journal of the Royal Statistical Society (Series B) , vol.36 , pp. 111-147
    • Stone, M.1
  • 33
    • 34250692925 scopus 로고    scopus 로고
    • Model evaluation based on the sampling distribution of estimated absolute prediction error
    • DOI 10.1093/biomet/asm036
    • Tian, B. L., Cai, T., Goetghebeur, E., &Wei, L. J. (2007). Model evaluationbased on the sampling distribution of estimated absolute prediction error. Biometrika, 94(2), 297-311, Doi: 10.1093/biomet/asm036. (Pubitemid 47351562)
    • (2007) Biometrika , vol.94 , Issue.2 , pp. 297-311
    • Tian, L.U.1    Cai, T.2    Goetghebeur, E.3    Wei, L.J.4
  • 34
    • 0010491659 scopus 로고
    • On the distributional properties of model selection criteria
    • Zhang, P. (1992). On the distributional properties of model selection criteria. Journal of the American Statistical Association, 87(419), 732-737.
    • (1992) Journal of the American Statistical Association , vol.87 , Issue.419 , pp. 732-737
    • Zhang, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.