메뉴 건너뛰기




Volumn 29, Issue , 2013, Pages 501-528

Mathematical modeling of eukaryotic cell migration: Insights beyond experiments

Author keywords

actin; adhesion; cell motility; computational modeling; mathematical modeling; myosin

Indexed keywords

MYOSIN ADENOSINE TRIPHOSPHATASE;

EID: 84885806810     PISSN: 10810706     EISSN: 15308995     Source Type: Book Series    
DOI: 10.1146/annurev-cellbio-101512-122308     Document Type: Review
Times cited : (164)

References (152)
  • 1
    • 0018898773 scopus 로고
    • The Croonian lecture, 1978: The crawling movement of metazoan cells
    • Abercrombie M. 1980. The Croonian lecture, 1978: the crawling movement of metazoan cells. Proc. R. Soc. Lond. B 207:129-47
    • (1980) Proc. R. Soc. Lond. B , vol.207 , pp. 129-147
    • Abercrombie, M.1
  • 2
    • 14044270698 scopus 로고    scopus 로고
    • In silico reconstitution of Listeria propulsion exhibits nano-saltation
    • Alberts JB, Odell GM. 2004. In silico reconstitution of Listeria propulsion exhibits nano-saltation. PLoS Biol. 2:e412
    • (2004) PLoS Biol. , vol.2
    • Alberts, J.B.1    Odell, G.M.2
  • 3
    • 52449089651 scopus 로고    scopus 로고
    • Comparative dynamics of retrograde actin flow and focal adhesions: Formation of nascent adhesions triggers transition from fast to slow flow
    • Alexandrova AY, Arnold K, Schaub S, Vasiliev JM, Meister JJ, et al. 2008. Comparative dynamics of retrograde actin flow and focal adhesions: Formation of nascent adhesions triggers transition from fast to slow flow. PLoS ONE 3:e3234
    • (2008) PLoS ONE , vol.3
    • Alexandrova, A.Y.1    Arnold, K.2    Schaub, S.3    Vasiliev, J.M.4    Meister, J.J.5
  • 4
    • 84873750563 scopus 로고    scopus 로고
    • Cell migration with multiple pseudopodia: Temporal and spatial sensing models
    • Allena R. 2013. Cell migration with multiple pseudopodia: temporal and spatial sensing models. Bull. Math. Biol. 75:288-316
    • (2013) Bull. Math. Biol. , vol.75 , pp. 288-316
    • Allena, R.1
  • 5
    • 84867872832 scopus 로고    scopus 로고
    • The mechanics behind cell polarity
    • Asnacios A, Hamant O. 2012. The mechanics behind cell polarity. Trends Cell Biol. 22:584-91
    • (2012) Trends Cell Biol. , vol.22 , pp. 584-591
    • Asnacios, A.1    Hamant, O.2
  • 6
    • 84885727899 scopus 로고
    • A contraction-disassembly model for intracellular actin gels
    • Alt W, Dembo M. 1983. A contraction-disassembly model for intracellular actin gels. Lect. NotesMath. 1017:1-9
    • (1983) Lect. NotesMath. , vol.1017 , pp. 1-9
    • Alt, W.1    Dembo, M.2
  • 7
    • 0000079636 scopus 로고    scopus 로고
    • Cytoplasm dynamics and cell motion: Two-phase flow models
    • AltW, Dembo M. 1999. Cytoplasm dynamics and cell motion: two-phase flow models. Math. Biosci. 156:207-28
    • (1999) Math. Biosci. , vol.156 , pp. 207-228
    • Alt, W.1    Dembo, M.2
  • 8
    • 27744590494 scopus 로고    scopus 로고
    • Morphology of the lamellipodium and organization of actin filaments at the leading edge of crawling cells
    • Atilgan E, Wirtz D, Sun SX. 2005. Morphology of the lamellipodium and organization of actin filaments at the leading edge of crawling cells. Biophys. J. 89:3589-602
    • (2005) Biophys. J. , vol.89 , pp. 3589-3602
    • Atilgan, E.1    Wirtz, D.2    Sun, S.X.3
  • 9
    • 13344269588 scopus 로고    scopus 로고
    • A local coupling model and compass parameter for eukaryotic chemotaxis
    • Arrieumerlou C, Meyer T. 2005. A local coupling model and compass parameter for eukaryotic chemotaxis. Dev. Cell 8:215-27
    • (2005) Dev. Cell , vol.8 , pp. 215-227
    • Arrieumerlou, C.1    Meyer, T.2
  • 10
    • 79958046639 scopus 로고    scopus 로고
    • An adhesion-dependent switch between mechanisms that determine motile cell shape
    • Barnhart EL, Lee KC, Keren K, Mogilner A, Theriot JA. 2011. An adhesion-dependent switch between mechanisms that determine motile cell shape. PLoS Biol. 9:e1001059
    • (2011) PLoS Biol. , vol.9
    • Barnhart, E.L.1    Lee, K.C.2    Keren, K.3    Mogilner, A.4    Theriot, J.A.5
  • 11
    • 0018101150 scopus 로고
    • Models for the specific adhesion of cells to cells
    • Bell GI. 1978. Models for the specific adhesion of cells to cells. Science 200:618-27
    • (1978) Science , vol.200 , pp. 618-627
    • Bell, G.I.1
  • 12
    • 43149086620 scopus 로고    scopus 로고
    • A quantitative analysis of contractility in active cytoskeletal protein networks
    • Bendix PM, Koenderink GH, Cuvelier D, Dogic Z, Koeleman BN, et al. 2008. A quantitative analysis of contractility in active cytoskeletal protein networks. Biophys. J. 94:3126-36
    • (2008) Biophys. J. , vol.94 , pp. 3126-3136
    • Bendix, P.M.1    Koenderink, G.H.2    Cuvelier, D.3    Dogic, Z.4    Koeleman, B.N.5
  • 13
    • 84865957893 scopus 로고    scopus 로고
    • Cell mechanics control rapid transitions between blebs and lamellipodia during migration
    • Bergert M, Chandradoss SD, Desai RA, Paluch E. 2012. Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proc. Natl. Acad. Sci. USA 109:14434-39
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 14434-14439
    • Bergert, M.1    Chandradoss, S.D.2    Desai, R.A.3    Paluch, E.4
  • 14
    • 77955615646 scopus 로고    scopus 로고
    • Mathematical modeling of endocytic actin patch kinetics in fission yeast: Disassembly requires release of actin filament fragments
    • Berro J, Sirotkin V, Pollard TD. 2010. Mathematical modeling of endocytic actin patch kinetics in fission yeast: disassembly requires release of actin filament fragments. Mol. Biol. Cell 21:2905-15
    • (2010) Mol. Biol. Cell , vol.21 , pp. 2905-2915
    • Berro, J.1    Sirotkin, V.2    Pollard, T.D.3
  • 16
    • 82955201867 scopus 로고    scopus 로고
    • Mechano-sensing and cell migration: A 3D model approach
    • Borau C, Kamm RD, García-Aznar JM. 2011. Mechano-sensing and cell migration: a 3D model approach. Phys. Biol. 8:066008
    • (2011) Phys. Biol. , vol.8 , pp. 066008
    • Borau, C.1    Kamm, R.D.2    García-Aznar, J.M.3
  • 18
    • 23244437592 scopus 로고    scopus 로고
    • Theory of force regulation by nascent adhesion sites
    • Bruinsma R. 2005. Theory of force regulation by nascent adhesion sites. Biophys. J. 89:87-94
    • (2005) Biophys. J. , vol.89 , pp. 87-94
    • Bruinsma, R.1
  • 19
    • 0842281652 scopus 로고    scopus 로고
    • Rho and Rac take center stage
    • Burridge K, Wennerberg K. 2004. Rho and Rac take center stage. Cell 116:167-79
    • (2004) Cell , vol.116 , pp. 167-179
    • Burridge, K.1    Wennerberg, K.2
  • 20
    • 84872084802 scopus 로고    scopus 로고
    • The tension mounts: Stress fibers as force-generating mechanotransducers
    • Burridge K, Wittchen ES. 2013. The tension mounts: stress fibers as force-generating mechanotransducers. J. Cell Biol. 200:9-19
    • (2013) J. Cell Biol. , vol.200 , pp. 9-19
    • Burridge, K.1    Wittchen, E.S.2
  • 21
    • 0034804332 scopus 로고    scopus 로고
    • Growth of branched actin networks against obstacles
    • Carlsson AE. 2001. Growth of branched actin networks against obstacles. Biophys. J. 81:1907-23
    • (2001) Biophys. J. , vol.81 , pp. 1907-1923
    • Carlsson, A.E.1
  • 22
    • 0013160046 scopus 로고    scopus 로고
    • Growth velocities of branched actin networks
    • Carlsson AE. 2003. Growth velocities of branched actin networks. Biophys. J. 84:2907-18
    • (2003) Biophys. J. , vol.84 , pp. 2907-2918
    • Carlsson, A.E.1
  • 23
    • 58149230940 scopus 로고    scopus 로고
    • Traction dynamics of filopodia on compliant substrates
    • Chan CE, Odde DJ. 2008. Traction dynamics of filopodia on compliant substrates. Science 322:1687-91
    • (2008) Science , vol.322 , pp. 1687-1691
    • Chan, C.E.1    Odde, D.J.2
  • 24
    • 77649210771 scopus 로고    scopus 로고
    • Stochastic model of integrinmediated signaling and adhesion dynamics at the leading edges of migrating cells
    • Cirit M, Krajcovic M, Choi CK, Welf ES, Horwitz AF, Haugh JM. 2010. Stochastic model of integrinmediated signaling and adhesion dynamics at the leading edges of migrating cells. PLoS Comput. Biol. 6:e1000688
    • (2010) PLoS Comput. Biol. , vol.6
    • Cirit, M.1    Krajcovic, M.2    Choi, C.K.3    Welf, E.S.4    Horwitz, A.F.5    Haugh, J.M.6
  • 25
    • 0017650815 scopus 로고
    • The contractile basis of amoeboid movement. V. The control of gelation, solation, and contraction in extracts from Dictyostelium discoideum
    • Condeelis JS, Taylor DL. 1977. The contractile basis of amoeboid movement. V. The control of gelation, solation, and contraction in extracts from Dictyostelium discoideum. J. Cell Biol. 74:901-27
    • (1977) J. Cell Biol. , vol.74 , pp. 901-927
    • Condeelis, J.S.1    Taylor, D.L.2
  • 26
    • 80052538625 scopus 로고    scopus 로고
    • The emergence of sarcomeric, graded-polarity and spindle-like patterns in bundles of short cytoskeletal polymers and two opposite molecular motors
    • Craig EM, Dey S, Mogilner A. 2011. The emergence of sarcomeric, graded-polarity and spindle-like patterns in bundles of short cytoskeletal polymers and two opposite molecular motors. J. Phys. Condens. Matter 23:374102
    • (2011) J. Phys. Condens. Matter , vol.23 , pp. 374102
    • Craig, E.M.1    Dey, S.2    Mogilner, A.3
  • 27
    • 77954240254 scopus 로고    scopus 로고
    • Forming the cell rear first: Breaking cell symmetry to trigger directed cell migration
    • Cramer LP. 2010. Forming the cell rear first: breaking cell symmetry to trigger directed cell migration. Nat. Cell Biol. 12:628-32
    • (2010) Nat. Cell Biol. , vol.12 , pp. 628-632
    • Cramer, L.P.1
  • 29
    • 0022510406 scopus 로고
    • Cell motion, contractile networks, and the physics of interpenetrating reactive flow
    • Dembo M, Harlow F. 1986. Cell motion, contractile networks, and the physics of interpenetrating reactive flow. Biophys. J. 50:109-21
    • (1986) Biophys. J. , vol.50 , pp. 109-121
    • Dembo, M.1    Harlow, F.2
  • 30
    • 10344258168 scopus 로고    scopus 로고
    • Force generation by cytoskeletal filament end-tracking proteins
    • Dickinson RB, Caro L, Purich DL. 2004. Force generation by cytoskeletal filament end-tracking proteins. Biophys. J. 87:2838-54
    • (2004) Biophys. J. , vol.87 , pp. 2838-2854
    • Dickinson, R.B.1    Caro, L.2    Purich, D.L.3
  • 31
    • 0025886995 scopus 로고
    • Mathematical model for the effects of adhesion andmechanics on cell migration speed
    • DiMilla PA, Barbee K, Lauffenburger DA. 1991. Mathematical model for the effects of adhesion andmechanics on cell migration speed. Biophys. J. 60:15-37
    • (1991) Biophys. J. , vol.60 , pp. 15-37
    • Di Milla, P.A.1    Barbee, K.2    Lauffenburger, D.A.3
  • 33
    • 84872875983 scopus 로고    scopus 로고
    • Use the force: Membrane tension as an organizer of cell shape and motility
    • Diz-Muñoz A, Fletcher DA, Weiner OD. 2013. Use the force:membrane tension as an organizer of cell shape and motility. Trends Cell Biol. 23:47-53
    • (2013) Trends Cell Biol. , vol.23 , pp. 47-53
    • Diz-Muñoz, A.1    Fletcher, D.A.2    Weiner, O.D.3
  • 35
    • 33847773123 scopus 로고    scopus 로고
    • Direct measurement of force generation by actin filament polymerization using an optical trap
    • Footer MJ, Kerssemakers JWJ, Theriot JA, Dogterom M. 2007. Direct measurement of force generation by actin filament polymerization using an optical trap. Proc. Natl. Acad. Sci. USA 104:2181-86
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 2181-2186
    • Footer, M.J.1    Kerssemakers, J.W.J.2    Theriot, J.A.3    Dogterom, M.4
  • 38
    • 84857703718 scopus 로고    scopus 로고
    • Howcells feel their substrate: Spontaneous symmetry breaking of active surface stresses
    • Friedrich BM, Safran SA. 2012.Howcells feel their substrate: spontaneous symmetry breaking of active surface stresses. Soft Matter 8:3223-30
    • (2012) Soft Matter , vol.8 , pp. 3223-3230
    • Friedrich, B.M.1    Safran, S.A.2
  • 39
    • 77957996302 scopus 로고    scopus 로고
    • Direct visualization of secondary structures of F-actin by electron cryomicroscopy
    • Fujii T, Iwane AH, Yanagida T, Namba K. 2010. Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 467:724-28
    • (2010) Nature , vol.467 , pp. 724-728
    • Fujii, T.1    Iwane, A.H.2    Yanagida, T.3    Namba, K.4
  • 41
    • 79961120799 scopus 로고    scopus 로고
    • Probing mechanical principles of focal contacts in cell-matrix adhesion with a coupled stochastic-elastic modelling framework
    • Gao H, Qian J, Chen B. 2011. Probing mechanical principles of focal contacts in cell-matrix adhesion with a coupled stochastic-elastic modelling framework. J. R. Soc. Interface 8:1217-32
    • (2011) J. R. Soc. Interface , vol.8 , pp. 1217-1232
    • Gao, H.1    Qian, J.2    Chen, B.3
  • 42
    • 58249086114 scopus 로고    scopus 로고
    • Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed
    • Gardel ML, Sabass B, Ji L, Danuser G, Schwarz US, Waterman CM. 2008. Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J. Cell Biol. 183:999-1005
    • (2008) J. Cell Biol. , vol.183 , pp. 999-1005
    • Gardel, M.L.1    Sabass, B.2    Ji, L.3    Danuser, G.4    Schwarz, U.S.5    Waterman, C.M.6
  • 43
    • 0035479910 scopus 로고    scopus 로고
    • Assembly and mechanosensory function of focal contacts
    • Geiger B, Bershadsky A. 2001. Assembly and mechanosensory function of focal contacts. Curr. Opin. Cell Biol. 13:584-92
    • (2001) Curr. Opin. Cell Biol. , vol.13 , pp. 584-592
    • Geiger, B.1    Bershadsky, A.2
  • 44
    • 0033747006 scopus 로고    scopus 로고
    • An elastic analysis of Listeria monocytogenes propulsion
    • Gerbal F, Chaikin P, Rabin Y, Prost J. 2000. An elastic analysis of Listeria monocytogenes propulsion. Biophys. J. 79:2259-75
    • (2000) Biophys. J. , vol.79 , pp. 2259-2275
    • Gerbal, F.1    Chaikin, P.2    Rabin, Y.3    Prost, J.4
  • 45
    • 33846672361 scopus 로고    scopus 로고
    • Lamellipodial actin mechanically links myosin activity with adhesion-site formation
    • Giannone G, Dubin-Thaler BJ, Rossier O, Cai Y, Chaga O, et al. 2007. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128:561-75
    • (2007) Cell , vol.128 , pp. 561-575
    • Giannone, G.1    Dubin-Thaler, B.J.2    Rossier, O.3    Cai, Y.4    Chaga, O.5
  • 46
    • 84872835670 scopus 로고    scopus 로고
    • Cell polarity: Mechanochemical patterning
    • Goehring NW, Grill SW. 2013. Cell polarity: mechanochemical patterning. Trends Cell Biol. 23:72-80
    • (2013) Trends Cell Biol. , vol.23 , pp. 72-80
    • Goehring, N.W.1    Grill, S.W.2
  • 48
    • 0242390532 scopus 로고    scopus 로고
    • Analysis of actin dynamics at the leading edge of crawling cells: Implications for the shape of keratocyte lamellipodia
    • Grimm HP, Verkhovsky AB, Mogilner A, Meister JJ. 2003. Analysis of actin dynamics at the leading edge of crawling cells: implications for the shape of keratocyte lamellipodia. Eur. Biophys. J. 32:563-77
    • (2003) Eur. Biophys. J. , vol.32 , pp. 563-577
    • Grimm, H.P.1    Verkhovsky, A.B.2    Mogilner, A.3    Meister, J.J.4
  • 49
    • 23144442645 scopus 로고    scopus 로고
    • Regulation of cadherin-mediated adhesion in morphogenesis
    • Gumbiner BM. 2005. Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol. 6:622-34
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 622-634
    • Gumbiner, B.M.1
  • 50
    • 33745245989 scopus 로고    scopus 로고
    • Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration
    • Gupton SL,Waterman-Storer CM. 2006. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125:1361-74
    • (2006) Cell , vol.125 , pp. 1361-1374
    • Gupton Slwaterman-Storer, C.M.1
  • 51
    • 80052431735 scopus 로고    scopus 로고
    • Spontaneous contractilitymediated cortical flow generates cell migration in three-dimensional environments
    • Hawkins RJ, Poincloux R, Bénichou O, Piel M, Chavrier P, Voituriez R. 2011. Spontaneous contractilitymediated cortical flow generates cell migration in three-dimensional environments. Biophys. J. 101:1041-45
    • (2011) Biophys. J. , vol.101 , pp. 1041-1045
    • Hawkins, R.J.1    Poincloux, R.2    Bénichou, O.3    Piel, M.4    Chavrier, P.5    Voituriez, R.6
  • 52
  • 53
    • 77951628111 scopus 로고    scopus 로고
    • Form and function in cell motility: From fibroblasts to keratocytes
    • Herant M, Dembo M. 2010. Form and function in cell motility: from fibroblasts to keratocytes. Biophys. J. 98:1408-17
    • (2010) Biophys. J. , vol.98 , pp. 1408-1417
    • Herant, M.1    Dembo, M.2
  • 54
    • 0019819599 scopus 로고
    • Microfilament or microtubule assembly or disassembly against a force
    • Hill TL. 1981. Microfilament or microtubule assembly or disassembly against a force. Proc. Natl. Acad. Sci. USA 78:5613-17
    • (1981) Proc. Natl. Acad. Sci. USA , vol.78 , pp. 5613-5617
    • Hill, T.L.1
  • 55
    • 84872032983 scopus 로고    scopus 로고
    • A comparison of computational models for eukaryotic cell shape and motility
    • Holmes WR, Edelstein-Keshet L. 2012. A comparison of computational models for eukaryotic cell shape and motility. PLoS Comput. Biol. 8:e1002793
    • (2012) PLoS Comput. Biol. , vol.8
    • Holmes, W.R.1    Edelstein-Keshet, L.2
  • 56
    • 84856116174 scopus 로고    scopus 로고
    • Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration
    • Houk AR, Jilkine A, Mejean CO, Boltyanskiy R, Dufresne ER, et al. 2012. Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell 148:175-88
    • (2012) Cell , vol.148 , pp. 175-188
    • Houk, A.R.1    Jilkine, A.2    Mejean, C.O.3    Boltyanskiy, R.4    Dufresne, E.R.5
  • 57
    • 84857719334 scopus 로고    scopus 로고
    • Biased excitable networks: How cells direct motion in response to gradients
    • Iglesias PA, Devreotes PN. 2012. Biased excitable networks: how cells direct motion in response to gradients. Curr. Opin. Cell Biol. 24:245-53
    • (2012) Curr. Opin. Cell Biol. , vol.24 , pp. 245-253
    • Iglesias, P.A.1    Devreotes, P.N.2
  • 58
    • 0032843103 scopus 로고    scopus 로고
    • Localized depolymerization of the major sperm protein cytoskeleton correlates with the forward movement of the cell body in the amoeboid movement of nematode sperm
    • Italiano JE, Stewart M, Roberts TM. 1999. Localized depolymerization of the major sperm protein cytoskeleton correlates with the forward movement of the cell body in the amoeboid movement of nematode sperm. J. Cell Biol. 146:1087-95
    • (1999) J. Cell Biol. , vol.146 , pp. 1087-1095
    • Italiano, J.E.1    Stewart, M.2    Roberts, T.M.3
  • 59
    • 33847315536 scopus 로고    scopus 로고
    • Spatial and temporal relationships between actin-filament nucleation, capping, and disassembly
    • Iwasa JH, Mullins RD. 2007. Spatial and temporal relationships between actin-filament nucleation, capping, and disassembly. Curr. Biol. 17:395-406
    • (2007) Curr. Biol. , vol.17 , pp. 395-406
    • Iwasa, J.H.1    Mullins, R.D.2
  • 60
    • 0025871812 scopus 로고
    • Modulation of contraction by gelation/solation in a reconstituted motile model
    • Janson LW, Kolega J, Taylor DL. 1991. Modulation of contraction by gelation/solation in a reconstituted motile model. J. Cell Biol. 114:1005-15
    • (1991) J. Cell Biol. , vol.114 , pp. 1005-1015
    • Janson, L.W.1    Kolega, J.2    Taylor, D.L.3
  • 61
    • 57049151271 scopus 로고    scopus 로고
    • Fluctuations of intracellular forces during cell protrusion
    • Ji L, Lim J, Danuser G. 2008. Fluctuations of intracellular forces during cell protrusion. Nat. Cell Biol. 10:1393-400
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1393-1400
    • Ji, L.1    Lim, J.2    Danuser, G.3
  • 63
    • 36849072379 scopus 로고    scopus 로고
    • Model of polarization and bi-stability of cell fragments
    • Kozlov MM, Mogilner A. 2007. Model of polarization and bi-stability of cell fragments. Biophys. J. 93:3811-19
    • (2007) Biophys. J. , vol.93 , pp. 3811-3819
    • Kozlov, M.M.1    Mogilner, A.2
  • 65
    • 84861552972 scopus 로고    scopus 로고
    • Network crosstalk dynamically changes during neutrophil polarization
    • Ku CJ, Wang Y, Weiner OD, Altschuler SJ, Wu LF. 2012. Network crosstalk dynamically changes during neutrophil polarization. Cell 149:1073-83
    • (2012) Cell , vol.149 , pp. 1073-1083
    • Ku, C.J.1    Wang, Y.2    Weiner, O.D.3    Altschuler, S.J.4    Wu, L.F.5
  • 66
    • 63249111510 scopus 로고    scopus 로고
    • Continuum model of cell adhesion and migration
    • Kuusela E, Alt W. 2009. Continuum model of cell adhesion and migration. J. Math. Biol. 58:135-61
    • (2009) J. Math. Biol. , vol.58 , pp. 135-161
    • Kuusela, E.1    Alt, W.2
  • 67
    • 84863174604 scopus 로고    scopus 로고
    • Choosing orientation: Influence of cargo geometry and Act A polarization on actin comet tails
    • Lacayo CI, Soneral PA, Zhu J, Tsuchida MA, Footer MJ, et al. 2012. Choosing orientation: influence of cargo geometry and Act A polarization on actin comet tails. Mol. Biol. Cell 23:614-29
    • (2012) Mol. Biol. Cell , vol.23 , pp. 614-629
    • Lacayo, C.I.1    Soneral, P.A.2    Zhu, J.3    Teillet, M.A.4    Footer, M.J.5
  • 68
    • 0027404903 scopus 로고
    • Principles of locomotion for simple-shaped cells
    • Lee J, Ishihara A, Theriot JA, Jacobson K. 1993. Principles of locomotion for simple-shaped cells. Nature 362:167-71
    • (1993) Nature , vol.362 , pp. 167-171
    • Lee, J.1    Ishihara, A.2    Theriot, J.A.3    Jacobson, K.4
  • 69
    • 70349605655 scopus 로고    scopus 로고
    • Force-velocity relation for actin-polymerization-driven motility from Brownian dynamics simulations
    • Lee KC, Liu AJ. 2009. Force-velocity relation for actin-polymerization- driven motility from Brownian dynamics simulations. Biophys. J. 97:1295-304
    • (2009) Biophys. J. , vol.97 , pp. 1295-1304
    • Lee, K.C.1    Liu, A.J.2
  • 70
    • 84862197022 scopus 로고    scopus 로고
    • Contractile units in disordered actomyosin bundles arise from F-actin buckling
    • Lenz M, Thoresen T, Gardel ML,Dinner AR. 2012. Contractile units in disordered actomyosin bundles arise from F-actin buckling. Phys. Rev. Lett. 108:238107
    • (2012) Phys. Rev. Lett. , vol.108 , pp. 238107
    • Lenz, M.1    Thoresen, T.2    Gardel Mldinner, A.R.3
  • 71
    • 77951521330 scopus 로고    scopus 로고
    • Model for how retrograde actin flow regulates adhesion traction stresses
    • Li Y, Bhimalapuram P, Dinner AR. 2010. Model for how retrograde actin flow regulates adhesion traction stresses. J. Phys. Condens. Matter 22:194113
    • (2010) J. Phys. Condens. Matter , vol.22 , pp. 194113
    • Li, Y.1    Bhimalapuram, P.2    Dinner, A.R.3
  • 72
    • 84881311569 scopus 로고    scopus 로고
    • Membrane tension in rapidly moving cells is determined by cytoskeletal forces rather than membrane area
    • Lieber AD, Yehudai-Resheff S, Barnhart EL, Theriot JA, Keren K. 2013. Membrane tension in rapidly moving cells is determined by cytoskeletal forces rather than membrane area. Curr. Biol. 23:1409-17
    • (2013) Curr. Biol. , vol.23 , pp. 1409-1417
    • Lieber, A.D.1    Yehudai-Resheff, S.2    Barnhart, E.L.3    Theriot, J.A.4    Keren, K.5
  • 73
    • 77953807732 scopus 로고    scopus 로고
    • Protrusion and actin assembly are coupled to the organization of lamellar contractile structures
    • Lim JI, Sabouri-Ghomi M, Machacek M, Waterman CM, Danuser G. 2010. Protrusion and actin assembly are coupled to the organization of lamellar contractile structures. Exp. Cell Res. 316:2027-41
    • (2010) Exp. Cell Res. , vol.316 , pp. 2027-2041
    • Lim, J.I.1    Sabouri-Ghomi, M.2    Machacek, M.3    Waterman, C.M.4    Danuser, G.5
  • 75
    • 69949185998 scopus 로고    scopus 로고
    • Coordination of Rho GTPase activities during cell protrusion
    • Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, et al. 2009. Coordination of Rho GTPase activities during cell protrusion. Nature 461:99-103
    • (2009) Nature , vol.461 , pp. 99-103
    • Machacek, M.1    Hodgson, L.2    Welch, C.3    Elliott, H.4    Pertz, O.5
  • 76
    • 0035949715 scopus 로고    scopus 로고
    • Self-organization of a propulsive actin network as an evolutionary process
    • Maly IV, Borisy GG. 2001. Self-organization of a propulsive actin network as an evolutionary process. Proc. Natl. Acad. Sci. USA 98:11324-29
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 11324-11329
    • Maly, I.V.1    Borisy, G.G.2
  • 77
    • 0346688723 scopus 로고    scopus 로고
    • Self-organization of polarized cell signaling via autocrine circuits: Computational model analysis
    • Wiley
    • Maly IV, Wiley HS, Lauffenburger DA. 2004. Self-organization of polarized cell signaling via autocrine circuits: computational model analysis. Biophys. J. 86:10-22
    • (2004) Biophys. J. , vol.86 , pp. 10-22
    • Maly, I.V.1    Wiley, H.S.2    Lauffenburger, D.A.3
  • 78
    • 80053103556 scopus 로고    scopus 로고
    • Rigidity sensing explained by active matter theory
    • Marcq P, Yoshinaga N, Prost J. 2011. Rigidity sensing explained by active matter theory. Biophys. J. 101:L33-35
    • (2011) Biophys. J. , vol.101
    • Marcq, P.1    Yoshinaga, N.2    Prost, J.3
  • 79
    • 1942469424 scopus 로고    scopus 로고
    • Forces generated during actin-based propulsion: A direct measurement by micromanipulation
    • Marcy Y, Prost J, Carlier MF, Sykes C. 2004. Forces generated during actin-based propulsion: a direct measurement by micromanipulation. Proc. Natl. Acad. Sci. USA 101:5992-97
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 5992-5997
    • Marcy, Y.1    Prost, J.2    Carlier, M.F.3    Sykes, C.4
  • 81
    • 84862124625 scopus 로고    scopus 로고
    • Actin depolymerization drives actomyosin ring contraction during budding yeast cytokinesis
    • Mendes Pinto I, Rubinstein B, Kucharavy A,Unruh JR, Li R. 2012. Actin depolymerization drives actomyosin ring contraction during budding yeast cytokinesis. Dev. Cell 22:1247-60
    • (2012) Dev. Cell , vol.22 , pp. 1247-1260
    • Mendes Pinto, I.1    Rubinstein, B.2    Kucharavy, A.3    Unruh, J.R.4    Li, R.5
  • 82
    • 79961184429 scopus 로고    scopus 로고
    • A model actin comet tail disassembling by severing
    • Michalski PJ, Carlsson AE. 2011. A model actin comet tail disassembling by severing. Phys. Biol. 8:046003
    • (2011) Phys. Biol. , vol.8 , pp. 046003
    • Michalski, P.J.1    Carlsson, A.E.2
  • 83
    • 0036708436 scopus 로고    scopus 로고
    • Regulation of actin dynamics in rapidly moving cells: A quantitative analysis
    • Mogilner A, Edelstein-Keshet L. 2002. Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys. J. 83:1237-58
    • (2002) Biophys. J. , vol.83 , pp. 1237-1258
    • Mogilner, A.1    Edelstein-Keshet, L.2
  • 84
    • 0029775654 scopus 로고    scopus 로고
    • Cell motility driven by actin polymerization
    • Mogilner A, Oster G. 1996. Cell motility driven by actin polymerization. Biophys. J. 71:3030-45
    • (1996) Biophys. J. , vol.71 , pp. 3030-3045
    • Mogilner, A.1    Oster, G.2
  • 85
    • 0037339268 scopus 로고    scopus 로고
    • Force generation by actin polymerization II: The elastic ratchet and tethered filaments
    • Mogilner A, Oster G. 2003. Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophys. J. 84:1591-605
    • (2003) Biophys. J. , vol.84 , pp. 1591-1605
    • Mogilner, A.1    Oster, G.2
  • 86
    • 77957793677 scopus 로고    scopus 로고
    • Structural basis for actin assembly, activation of ATP hydrolysis, and delayed phosphate release
    • Murakami T, Yasunaga TQ, Noguchi Y, Gomibuchi KX, Ngo TQ, et al. 2010. Structural basis for actin assembly, activation of ATP hydrolysis, and delayed phosphate release. Cell 143:275-87
    • (2010) Cell , vol.143 , pp. 275-287
    • Murakami, T.1    Yasunaga, T.Q.2    Noguchi, Y.3    Gomibuchi, K.X.4    Ngo, T.Q.5
  • 87
    • 84871395592 scopus 로고    scopus 로고
    • F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex
    • Murrell MP, Gardel ML. 2012. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex. Proc. Natl. Acad. Sci. USA 109:20820-25
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 20820-20825
    • Murrell, M.P.1    Gardel, M.L.2
  • 90
    • 0037452071 scopus 로고    scopus 로고
    • Adaptation of core mechanisms to generate cell polarity
    • Nelson WJ. 2003. Adaptation of core mechanisms to generate cell polarity. Nature 422:766-74
    • (2003) Nature , vol.422 , pp. 766-774
    • Nelson, W.J.1
  • 91
    • 4344596239 scopus 로고    scopus 로고
    • Cell mechanosensitivity controls the anisotropy of focal adhesions
    • Nicolas A, Geiger B, Safran SA. 2004. Cell mechanosensitivity controls the anisotropy of focal adhesions. Proc. Natl. Acad. Sci. USA 101:12520-25
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 12520-12525
    • Nicolas, A.1    Geiger, B.2    Safran, S.A.3
  • 92
    • 84855479406 scopus 로고    scopus 로고
    • Actin disassembly clock determines shape and speed of lamellipodial fragments
    • Ofer N, Mogilner A, Keren K. 2011. Actin disassembly clock determines shape and speed of lamellipodial fragments. Proc. Natl. Acad. Sci. USA 108:20394-99
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 20394-20399
    • Ofer, N.1    Mogilner, A.2    Keren, K.3
  • 93
    • 0031034352 scopus 로고    scopus 로고
    • Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness
    • Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF. 1997. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385:537-40
    • (1997) Nature , vol.385 , pp. 537-540
    • Palecek, S.P.1    Loftus, J.C.2    Ginsberg, M.H.3    Lauffenburger, D.A.4    Horwitz, A.F.5
  • 94
    • 77956064817 scopus 로고    scopus 로고
    • Cell adhesion: Integrating cytoskeletal dynamics and cellular tension
    • Parsons JT, Horwitz AR, Schwartz MA. 2010. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11:633-43
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 633-643
    • Parsons, J.T.1    Horwitz, A.R.2    Schwartz, M.A.3
  • 96
    • 0344912596 scopus 로고    scopus 로고
    • Cell locomotion and focal adhesions are regulated by substrate flexibility
    • Pelham RJ, Wang YL. 1997. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94:13661-65
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 13661-13665
    • Pelham, R.J.1    Wang, Y.L.2
  • 97
    • 0027194759 scopus 로고
    • Cellular motions and thermal fluctuations: The Brownian ratchet
    • Peskin CS, Odell GM, Oster GF. 1993. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys. J. 65:316-24
    • (1993) Biophys. J. , vol.65 , pp. 316-324
    • Peskin, C.S.1    Odell, G.M.2    Oster, G.F.3
  • 98
    • 0037459075 scopus 로고    scopus 로고
    • Cellular motility driven by assembly and disassembly of actin filaments
    • Pollard TD, Borisy GG. 2003. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453-65
    • (2003) Cell , vol.112 , pp. 453-465
    • Pollard, T.D.1    Borisy, G.G.2
  • 100
    • 72249098845 scopus 로고    scopus 로고
    • Lifetime and strength of periodic bond clusters between elastic media under inclined loading
    • Qian J, Wang J, Lin Y, Gao H. 2009. Lifetime and strength of periodic bond clusters between elastic media under inclined loading. Biophys. J. 97:2438-45
    • (2009) Biophys. J. , vol.97 , pp. 2438-2445
    • Qian, J.1    Wang, J.2    Lin, Y.3    Gao, H.4
  • 101
    • 5144224487 scopus 로고    scopus 로고
    • Direct comparison of the spread area, contractility, andmigration of balb/c 3T3 fibroblasts adhered to fibronectin-and RGD-modified substrata
    • Rajagopalan P, Marganski WA, Brown XQ, Wong JY. 2004. Direct comparison of the spread area, contractility, andmigration of balb/c 3T3 fibroblasts adhered to fibronectin-and RGD-modified substrata. Biophys. J. 87:2818-27
    • (2004) Biophys. J. , vol.87 , pp. 2818-2827
    • Rajagopalan, P.1    Marganski, W.A.2    Brown, X.Q.3    Wong, J.Y.4
  • 102
    • 79960318837 scopus 로고    scopus 로고
    • Turnover of branched actin filament networks by stochastic fragmentation with ADF/cofilin
    • Reymann A-C, Suarez C, Guérin C, Martiel J-L, Staiger CJ, et al. 2011. Turnover of branched actin filament networks by stochastic fragmentation with ADF/cofilin. Mol. Biol. Cell 22:2541-50
    • (2011) Mol. Biol. Cell , vol.22 , pp. 2541-2550
    • Reymann, A.-C.1    Suarez, C.2    Guérin, C.3    Martiel, J.-L.4    Staiger, C.J.5
  • 107
    • 84859832947 scopus 로고    scopus 로고
    • A review of models of fluctuating protrusion and retraction patterns at the leading edge of motile cells
    • Ryan GL, Watanabe N, Vavylonis D. 2012. A review of models of fluctuating protrusion and retraction patterns at the leading edge of motile cells. Cytoskeleton 69:195-206
    • (2012) Cytoskeleton , vol.69 , pp. 195-206
    • Ryan, G.L.1    Watanabe, N.2    Vavylonis, D.3
  • 108
    • 77951581602 scopus 로고    scopus 로고
    • Modeling cytoskeletal flow over adhesion sites: Competition between stochastic bond dynamics and intracellular relaxation
    • Sabass B, Schwarz US. 2010. Modeling cytoskeletal flow over adhesion sites: competition between stochastic bond dynamics and intracellular relaxation. J. Phys. Condens. Matter 22:194112
    • (2010) J. Phys. Condens. Matter , vol.22 , pp. 194112
    • Sabass, B.1    Schwarz, U.S.2
  • 109
    • 0035962486 scopus 로고    scopus 로고
    • Autocatalytic polymerization generates persistent random walk of crawling cells
    • Sambeth R, Baumgaertner A. 2001a. Autocatalytic polymerization generates persistent random walk of crawling cells. Phys. Rev. Lett. 86:5196-99
    • (2001) Phys. Rev. Lett. , vol.86 , pp. 5196-5199
    • Sambeth, R.1    Baumgaertner, A.2
  • 110
    • 0347081540 scopus 로고    scopus 로고
    • Locomotion of a two dimensional keratocyte model
    • Sambeth R, Baumgaertner A. 2001b. Locomotion of a two dimensional keratocyte model. J. Biol. Syst. 9:201-19
    • (2001) J. Biol. Syst. , vol.9 , pp. 201-219
    • Sambeth, R.1    Baumgaertner, A.2
  • 111
    • 43649107536 scopus 로고    scopus 로고
    • Exploring the control circuit of cell migration bymathematical modeling
    • Satulovsky J, Lui R, Wang YL. 2008. Exploring the control circuit of cell migration bymathematical modeling. Biophys. J. 94:3671-83
    • (2008) Biophys. J. , vol.94 , pp. 3671-3683
    • Satulovsky, J.1    Lui, R.2    Wang, Y.L.3
  • 112
    • 51049111874 scopus 로고    scopus 로고
    • Performance of a population of independent filaments in lamellipodial protrusion
    • Schaus TE, Borisy GG. 2008. Performance of a population of independent filaments in lamellipodial protrusion. Biophys. J. 95:1393-411
    • (2008) Biophys. J. , vol.95 , pp. 1393-1411
    • Schaus, T.E.1    Borisy, G.G.2
  • 113
    • 77952730351 scopus 로고    scopus 로고
    • Simulation of cell motility that reproduces the force-velocity relationship
    • Schreiber CH, Stewart M, Duke T. 2010. Simulation of cell motility that reproduces the force-velocity relationship. Proc. Natl. Acad. Sci. USA 107:9141-46
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 9141-9146
    • Schreiber, C.H.1    Stewart, M.2    Duke, T.3
  • 114
    • 32044449220 scopus 로고    scopus 로고
    • Focal adhesions as mechanosensors: The two-spring model
    • Schwarz US, Erdmann T, Bischofs IB. 2006. Focal adhesions as mechanosensors: the two-spring model. Biosystems 83:225-32
    • (2006) Biosystems , vol.83 , pp. 225-232
    • Schwarz, U.S.1    Erdmann, T.2    Bischofs, I.B.3
  • 115
    • 84860827144 scopus 로고    scopus 로고
    • Coupling actin flow, adhesion, and morphology in a computational cell motility model
    • Shao D, Levine H, Rappel WJ. 2012. Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proc. Natl. Acad. Sci. USA 109:6851-56
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 6851-6856
    • Shao, D.1    Levine, H.2    Rappel, W.J.3
  • 116
    • 84859902571 scopus 로고    scopus 로고
    • Physical model for self-organization of actin cytoskeleton and adhesion complexes at the cell front
    • Shemesh T, Bershadsky AD, Kozlov MM. 2012. Physical model for self-organization of actin cytoskeleton and adhesion complexes at the cell front. Biophys. J. 102:1746-56
    • (2012) Biophys. J. , vol.102 , pp. 1746-1756
    • Shemesh, T.1    Bershadsky, A.D.2    Kozlov, M.M.3
  • 117
    • 33847785678 scopus 로고    scopus 로고
    • Actin polymerization upon processive capping by formin: A model for slowing and acceleration
    • Shemesh T, Kozlov MM. 2007. Actin polymerization upon processive capping by formin: a model for slowing and acceleration. Biophys. J. 92:1512-21
    • (2007) Biophys. J. , vol.92 , pp. 1512-1521
    • Shemesh, T.1    Kozlov, M.M.2
  • 118
    • 77951647447 scopus 로고    scopus 로고
    • Myosin IIA dependent retrograde flow drives 3D cell migration
    • Shih W, Yamada S. 2010. Myosin IIA dependent retrograde flow drives 3D cell migration. Biophys. J. 98:L29-31
    • (2010) Biophys. J. , vol.98
    • Shih, W.1    Yamada, S.2
  • 119
    • 84873394824 scopus 로고    scopus 로고
    • Branching and capping determine the force-velocity relationships of branching actin networks
    • Smith DB, Liu J. 2013. Branching and capping determine the force-velocity relationships of branching actin networks. Phys. Biol. 10:016004
    • (2013) Phys. Biol. , vol.10 , pp. 016004
    • Smith, D.B.1    Liu, J.2
  • 120
    • 68949103782 scopus 로고    scopus 로고
    • Recoil after severing reveals stress fiber contraction mechanisms
    • Stachowiak MR, O?Shaughnessy B. 2009. Recoil after severing reveals stress fiber contraction mechanisms. Biophys. J. 97:462-71
    • (2009) Biophys. J. , vol.97 , pp. 462-471
    • Stachowiak, M.R.1    Oshaughnessy, B.2
  • 122
    • 79251549180 scopus 로고    scopus 로고
    • Robust organizational principles of protrusive biopolymer networks in migrating living cells
    • Stuhrmann B, Huber F, Kas J. 2011. Robust organizational principles of protrusive biopolymer networks in migrating living cells. PLoS ONE 6:e14471
    • (2011) PLoS ONE , vol.6
    • Stuhrmann, B.1    Huber, F.2    Kas, J.3
  • 123
    • 77955489876 scopus 로고    scopus 로고
    • Cytoskeletal cross-linking and bundling in motor-independent contraction
    • Sun SX, Walcott S, Wolgemuth CW. 2010. Cytoskeletal cross-linking and bundling in motor-independent contraction. Curr. Biol. 20:R649-54
    • (2010) Curr. Biol. , vol.20
    • Sun, S.X.1    Walcott, S.2    Wolgemuth, C.W.3
  • 124
    • 0033620689 scopus 로고    scopus 로고
    • Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia
    • Svitkina TM, Borisy GG. 1999. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145:1009-26
    • (1999) J. Cell Biol. , vol.145 , pp. 1009-1026
    • Svitkina, T.M.1    Borisy, G.G.2
  • 125
    • 0025740949 scopus 로고
    • Actin microfilament dynamics in locomoting cells
    • Theriot JA, Mitchison TJ. 1991. Actin microfilament dynamics in locomoting cells. Nature 352:126-31
    • (1991) Nature , vol.352 , pp. 126-131
    • Theriot, J.A.1    Mitchison, T.J.2
  • 126
    • 79960299436 scopus 로고    scopus 로고
    • Reconstitution of contractile actomyosin bundles
    • Thoresen T, Lenz M, Gardel ML. 2011. Reconstitution of contractile actomyosin bundles. Biophys. J. 100:2698-705
    • (2011) Biophys. J. , vol.100 , pp. 2698-2705
    • Thoresen, T.1    Lenz, M.2    Gardel, M.L.3
  • 127
    • 0023881276 scopus 로고
    • A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations
    • Tranquillo RT, Lauffenburger DA, Zigmond SH. 1988. A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations. J. Cell Biol. 106:303-9
    • (1988) J. Cell Biol. , vol.106 , pp. 303-309
    • Tranquillo, R.T.1    Lauffenburger, D.A.2    Zigmond, S.H.3
  • 128
    • 84860807182 scopus 로고    scopus 로고
    • Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness
    • Trichet L, Le Digabel J, Hawkins RJ, Vedula SRK, Gupta M, et al. 2012. Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc. Natl. Acad. Sci. USA 109:6933-38
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 6933-6938
    • Trichet, L.1    Le Digabel, J.2    Hawkins, R.J.3    Vedula, S.R.K.4    Gupta, M.5
  • 129
    • 3042831741 scopus 로고    scopus 로고
    • Simultaneous mapping of filamentous actin flow and turnover in migrating cells by quantitative fluorescent speckle microscopy
    • Vallotton P, Gupton SL, Waterman-Storer CM, Danuser G. 2004. Simultaneous mapping of filamentous actin flow and turnover in migrating cells by quantitative fluorescent speckle microscopy. Proc. Natl. Acad. Sci. USA 101:9660-65
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 9660-9665
    • Vallotton, P.1    Gupton, S.L.2    Waterman-Storer, C.M.3    Danuser, G.4
  • 130
    • 20844445979 scopus 로고    scopus 로고
    • Actin polymerization kinetics, cap structure, and fluctuations
    • Vavylonis D, Yang Q, O?Shaughnessy B. 2005. Actin polymerization kinetics, cap structure, and fluctuations. Proc. Natl. Acad. Sci. USA 102:8543-48
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 8543-8548
    • Vavylonis, D.1    Yang, Q.2    Oshaughnessy, B.3
  • 131
    • 0032609858 scopus 로고    scopus 로고
    • Network contraction model for cell translocation and retrograde flow
    • Verkhovsky AB, Svitkina TM, Borisy GG. 1999a. Network contraction model for cell translocation and retrograde flow. Biochem. Soc. Symp. 65:207-22
    • (1999) Biochem. Soc. Symp. , vol.65 , pp. 207-222
    • Verkhovsky, A.B.1    Svitkina, T.M.2    Borisy, G.G.3
  • 132
    • 0032901710 scopus 로고    scopus 로고
    • Self-polarization and directional motility of cytoplasm
    • Verkhovsky AB, Svitkina TM, Borisy GG. 1999b. Self-polarization and directional motility of cytoplasm. Curr. Biol. 9:11-20
    • (1999) Curr. Biol. , vol.9 , pp. 11-20
    • Verkhovsky, A.B.1    Svitkina, T.M.2    Borisy, G.G.3
  • 135
    • 77952355776 scopus 로고    scopus 로고
    • A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells
    • Walcott S, Sun SX. 2010. A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells. Proc. Natl. Acad. Sci. USA 107:7757-62
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 7757-7762
    • Walcott, S.1    Sun, S.X.2
  • 136
    • 84055211727 scopus 로고    scopus 로고
    • Nucleation and decay initiation are the stiffness-sensitive phases of focal adhesion maturation
    • Walcott S, Kim DH, Wirtz D, Sun SX. 2011. Nucleation and decay initiation are the stiffness-sensitive phases of focal adhesion maturation. Biophys. J. 101:2919-28
    • (2011) Biophys. J. , vol.101 , pp. 2919-2928
    • Walcott, S.1    Kim, D.H.2    Wirtz, D.3    Sun, S.X.4
  • 137
    • 0022390903 scopus 로고
    • Exchange of actin subunits at the leading edge of living fibroblasts: Possible role of treadmilling
    • Wang YL. 1985. Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J. Cell Biol. 101:597-602
    • (1985) J. Cell Biol. , vol.101 , pp. 597-602
    • Wang, Y.L.1
  • 138
    • 77950872185 scopus 로고    scopus 로고
    • Twocompeting orientation patterns explain experimentally observed anomalies in growing actin networks
    • Weichsel J, Schwarz US. 2010.Twocompeting orientation patterns explain experimentally observed anomalies in growing actin networks. Proc. Natl. Acad. Sci. USA 107:6304-9
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 6304-6309
    • Weichsel, J.1    Schwarz, U.S.2
  • 139
    • 77952687450 scopus 로고    scopus 로고
    • Myosin II contributes to cell-scale actin network treadmilling through network disassembly
    • Wilson CA, Tsuchida MA, Allen GM, Barnhart EL, Applegate KT, et al. 2010. Myosin II contributes to cell-scale actin network treadmilling through network disassembly. Nature 465:373-77
    • (2010) Nature , vol.465 , pp. 373-377
    • Wilson, C.A.1    Teillet, M.A.2    Allen, G.M.3    Barnhart, E.L.4    Applegate, K.T.5
  • 140
    • 80052494134 scopus 로고    scopus 로고
    • Redundant mechanisms for stable cell locomotion revealed by minimal models
    • Wolgemuth CW, Stajic J, Mogilner A. 2011. Redundant mechanisms for stable cell locomotion revealed by minimal models. Biophys. J. 101:545-53
    • (2011) Biophys. J. , vol.101 , pp. 545-553
    • Wolgemuth, C.W.1    Stajic, J.2    Mogilner, A.3
  • 141
    • 34748878938 scopus 로고    scopus 로고
    • Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility
    • Yam PT, Wilson CA, Ji L, Hebert B, Barnhart EL, et al. 2007. Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J. Cell Biol. 178:1207-21
    • (2007) J. Cell Biol. , vol.178 , pp. 1207-1221
    • Yam, P.T.1    Wilson, C.A.2    Ji, L.3    Hebert, B.4    Barnhart, E.L.5
  • 142
    • 84865382212 scopus 로고    scopus 로고
    • A mechanochemical model of actin filaments
    • Yogurtcu ON, Kim JS, Sun SX. 2012. A mechanochemical model of actin filaments. Biophys. J. 103:719-27
    • (2012) Biophys. J. , vol.103 , pp. 719-727
    • Yogurtcu, O.N.1    Kim, J.S.2    Sun, S.X.3
  • 143
    • 23244456797 scopus 로고    scopus 로고
    • Computational model for cell migration in three-dimensional matrices
    • Zaman MH, Kamm RD, Matsudaira P, Lauffenburger DA. 2005. Computational model for cell migration in three-dimensional matrices. Biophys. J. 89:1389-97
    • (2005) Biophys. J. , vol.89 , pp. 1389-1397
    • Zaman, M.H.1    Kamm, R.D.2    Matsudaira, P.3    Lauffenburger, D.A.4
  • 144
    • 33746593689 scopus 로고    scopus 로고
    • Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis
    • Zaman MH, Trapani LM, Sieminski AL, Mackellar D, Gong H, et al. 2006. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. USA 103:10889-94
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 10889-10894
    • Zaman, M.H.1    Trapani, L.M.2    Sieminski, A.L.3    Mackellar, D.4    Gong, H.5
  • 145
    • 68849091348 scopus 로고    scopus 로고
    • Motor-induced sliding ofmicrotubule and actin bundles
    • Zemel A,Mogilner A. 2009. Motor-induced sliding ofmicrotubule and actin bundles. Phys. Chem. Chem. Phys. 11:4821-33
    • (2009) Phys. Chem. Chem. Phys. , vol.11 , pp. 4821-4833
    • Zemel Amogilner, A.1
  • 147
    • 79956159106 scopus 로고    scopus 로고
    • Modelling and simulation of substrate elasticity sensing in stem cells
    • Zeng X, Li S. 2011. Modelling and simulation of substrate elasticity sensing in stem cells. Comp. Methods Biomech. Biomed. Eng. 14:447-58
    • (2011) Comp. Methods Biomech. Biomed. Eng. , vol.14 , pp. 447-458
    • Zeng, X.1    Li, S.2
  • 148
    • 84870720216 scopus 로고    scopus 로고
    • Mesoscopic model of actin-based propulsion
    • Zhu J, Mogilner A. 2012. Mesoscopic model of actin-based propulsion. PLoS Comput. Biol. 8:e1002764
    • (2012) PLoS Comput. Biol. , vol.8
    • Zhu, J.1    Mogilner, A.2
  • 149
    • 67650899090 scopus 로고    scopus 로고
    • Molecular noise of capping protein binding induces macroscopic instability in filopodial dynamics
    • Zhuravlev PI, Papoian GA. 2009. Molecular noise of capping protein binding induces macroscopic instability in filopodial dynamics. Proc. Natl. Acad. Sci. USA 106:11570-75
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 11570-11575
    • Zhuravlev, P.I.1    Papoian, G.A.2
  • 150
    • 84860761612 scopus 로고    scopus 로고
    • Model for self-polarization and motility of keratocyte fragments
    • Ziebert F, Swaminathan S, Aranson IS. 2012. Model for self-polarization and motility of keratocyte fragments. J. R. Soc. Interface 9:1084-92
    • (2012) J. R. Soc. Interface , vol.9 , pp. 1084-1092
    • Ziebert, F.1    Swaminathan, S.2    Aranson, I.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.