메뉴 건너뛰기




Volumn 4, Issue 4, 2013, Pages

COM: A method for mining and monitoring human activity patterns in home-based health monitoring systems

Author keywords

Assisted living technology; Health monitoring; Sequence mining; Smart environments

Indexed keywords

ASSISTED LIVING TECHNOLOGIES; DAILY ACTIVITY PATTERNS; HEALTH CARE PROFESSIONALS; HEALTH MONITORING; HEALTH MONITORING SYSTEM; REMOTE MONITORING SYSTEM; SEQUENCE MINING; SMART ENVIRONMENT;

EID: 84885674772     PISSN: 21576904     EISSN: 21576912     Source Type: Journal    
DOI: 10.1145/2508037.2508045     Document Type: Article
Times cited : (95)

References (60)
  • 3
    • 84885621349 scopus 로고    scopus 로고
    • AOA
    • AOA. 2011. Aging statistics. http://www.aoa.gov.
    • (2011) Aging Statistics.
  • 4
    • 11844303486 scopus 로고    scopus 로고
    • Health-statusmonitoring through analysis of behavioral patterns
    • BARGER, T.,BROWN, D., AND ALWAN,M. 2005. Health-statusmonitoring through analysis of behavioral patterns. IEEE Trans. Syst. Man Cybernet. Part A 35, 1, 22-27.
    • (2005) IEEE Trans. Syst. Man Cybernet. Part A , vol.35 , Issue.1 , pp. 22-27
    • Barger, T.1    Brown, D.2    Alwan, M.3
  • 9
    • 65749083852 scopus 로고    scopus 로고
    • Assessing the quality of activities in a smart environment
    • COOK, D. AND SCHMITTER-EDGECOMBE, M. 2009. Assessing the quality of activities in a smart environment. Method. Inf. Med. 48, 5, 480-485.
    • (2009) Method. Inf. Med. , vol.48 , Issue.5 , pp. 480-485
    • Cook, D.1    Schmitter-Edgecombe, M.2
  • 11
    • 78650443981 scopus 로고    scopus 로고
    • Unsupervised recognition of adls
    • Lecture Notes in Computer Science. Springer, Berlin Heidelberg
    • DIMITROV, T., PAULI, J., AND NAROSKA, E. 2010. Unsupervised recognition of adls. In Artificial Intelligence: Theories, Models and Applications, Lecture Notes in Computer Science, vol. 6040. Springer, Berlin Heidelberg, 71-80.
    • (2010) Artificial Intelligence: Theories, Models and Applications , vol.6040 , pp. 71-80
    • Dimitrov, T.1    Pauli, J.2    Naroska, E.3
  • 12
    • 11844294047 scopus 로고    scopus 로고
    • A fuzzy embedded agent-based approach for realizing ambient intelligence in intelligent inhabited environments
    • DOCTOR, F.,HAGRAS, H., AND CALLAGHAN, V. 2005. A fuzzy embedded agent-based approach for realizing ambient intelligence in intelligent inhabited environments. IEEE Trans. Syst.Man Cybernet. Part A 35, 1, 55-65.
    • (2005) IEEE Trans. Syst.Man Cybernet. Part A , vol.35 , Issue.1 , pp. 55-65
    • Doctor, F.1    Hagras, H.2    Callaghan, V.3
  • 13
    • 33847688457 scopus 로고    scopus 로고
    • Online sequential prediction via incremental parsing: The active lezi algorithm
    • GOPALRATNAM, K. AND COOK, D. J. 2007. Online sequential prediction via incremental parsing: The active lezi algorithm. IEEE Intell. Syst. 22, 1, 52-58.
    • (2007) IEEE Intell. Syst. , vol.22 , Issue.1 , pp. 52-58
    • Gopalratnam, K.1    Cook, D.J.2
  • 15
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • GUYON, I. AND ELISSEEFF, A. 2003. An introduction to variable and feature selection. Mach. Learn. Res. 3, 1157-1182.
    • (2003) Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 16
    • 33847691571 scopus 로고    scopus 로고
    • Distributed healthcare: Simultaneous assessment of multiple individuals
    • HAYES, T. L., PAVEL, M., LARIMER, N., TSAY, I. A., NUTT, J., AND ADAMI, A. G. 2007. Distributed healthcare: Simultaneous assessment of multiple individuals. IEEE Perv. Comput. 6, 1, 36-43.
    • (2007) IEEE Perv. Comput. , vol.6 , Issue.1 , pp. 36-43
    • Hayes, T.L.1    Pavel, M.2    Larimer, N.3    Tsay, I.A.4    Nutt, J.5    Adami, A.G.6
  • 17
    • 0035209308 scopus 로고    scopus 로고
    • Annual incidence of alzheimer disease in the united states projected to the years 2000 through 2050
    • HEBERT, L. E., BECKETT, L. A., SCHERR, P. A., AND EVANS, D. A. 2001. Annual incidence of alzheimer disease in the United States projected to the years 2000 through 2050. Alzheimer Dis. Assoc. Disorders 15, 4, 169-173.
    • (2001) Alzheimer Dis. Assoc. Disorders , vol.15 , Issue.4 , pp. 169-173
    • Hebert, L.E.1    Beckett, L.A.2    Scherr, P.A.3    Evans, D.A.4
  • 20
    • 33745337590 scopus 로고    scopus 로고
    • Defining obtrusiveness in home telehealth technologies: A conceptual framework
    • HENSEL, B. K., DEMIRIS, G., AND COURTNEY, K. 2006. Defining obtrusiveness in home telehealth technologies: A conceptual framework. J. Am. Med. Inf. Assoc. 13, 428-431.
    • (2006) J. Am. Med. Inf. Assoc. , vol.13 , pp. 428-431
    • Hensel, B.K.1    Demiris, G.2    Courtney, K.3
  • 21
    • 33745877161 scopus 로고    scopus 로고
    • Unsupervised discovery of structure in activity data using multiple eigenspaces
    • Springer, Berlin Heidelberg
    • HUYNH, T. AND SCHIELE, B. 2006. Unsupervised discovery of structure in activity data using multiple eigenspaces. Lecture Notes in Computer Science, vol. 3987. Springer, Berlin Heidelberg, 151-167.
    • (2006) Lecture Notes in Computer Science , vol.3987 , pp. 151-167
    • Huynh, T.1    Schiele, B.2
  • 30
    • 75049085494 scopus 로고    scopus 로고
    • Object relevance weight pattern mining for activity recognition and segmentation
    • PALMES, P.,PUNG, H. K.,GU, T.,XUE, W., AND CHEN, S. 2010. Object relevance weight pattern mining for activity recognition and segmentation. Perv. Mob. Comput. 6, 43-57.
    • (2010) Perv. Mob. Comput. , vol.6 , pp. 43-57
    • Palmes, P.1    Pung, H.K.2    Gu, T.3    Xue, W.4    Chen, S.5
  • 34
    • 33947584673 scopus 로고    scopus 로고
    • Constraint-based sequential pattern mining: The pattern-growthmethods
    • PEI, J.,HAN, J., ANDWANG,W. 2007. Constraint-based sequential pattern mining: The pattern-growthmethods. J. Intell. Inf. Syst. 28, 2, 133-160.
    • (2007) J. Intell. Inf. Syst. , vol.28 , Issue.2 , pp. 133-160
    • Pei, J.1    Han, J.2    Andwang, W.3
  • 38
    • 0000800741 scopus 로고
    • Morgan Kaufmann Publishers Inc., San Francisco, CA
    • RABINER, L. R. 1990. Readings in Speech Recognition. Morgan Kaufmann Publishers Inc., San Francisco, CA, 267-296.
    • (1990) Readings in Speech Recognition. , pp. 267-296
    • Rabiner, L.R.1
  • 40
    • 69649089364 scopus 로고    scopus 로고
    • The resident in the loop: Adapting the smart home to the user
    • RASHIDI, P. AND COOK, D. J. 2009. The resident in the loop: Adapting the smart home to the user. IEEE Trans. Syst. Man Cybernet. Part A 39, 5, 949-959.
    • (2009) IEEE Trans. Syst. Man Cybernet. Part A , vol.39 , Issue.5 , pp. 949-959
    • Rashidi, P.1    Cook, D.J.2
  • 43
    • 38849104954 scopus 로고    scopus 로고
    • What do family caregivers of alzheimer's disease patients desire in smart home technologies? Contrasted results of a wide survey
    • RIALLE, V., OLLIVET, C., GUIGUI, C., AND HERV́e, C. 2008. What do family caregivers of alzheimer's disease patients desire in smart home technologies? Contrasted results of a wide survey.Method. Inf. Med. 47, 63-9.
    • (2008) Method. Inf. Med. , vol.47 , pp. 63-69
    • Rialle, V.1    Ollivet, C.2    Guigui, C.3    Herv́e, C.4
  • 44
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • RISSANEN, J. 1978. Modeling by shortest data description. Automatica 14, 465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 45
    • 33745877161 scopus 로고    scopus 로고
    • Unsupervised discovery of structure in activity data using multiple eigenspaces
    • Lecture Notes in Computer Science, Springer, Berlin
    • SCHIELE, B. 2006. Unsupervised discovery of structure in activity data using multiple eigenspaces. In Proceeding of the 2nd International Workshop on Location and Context Awareness. Lecture Notes in Computer Science, vol. 3987, Springer, Berlin.
    • (2006) Proceeding of the 2nd International Workshop on Location and Context Awareness , pp. 3987
    • Schiele, B.1
  • 46
    • 0034244889 scopus 로고    scopus 로고
    • Learning patterns of activity using real-Time tracking
    • STAUFFER, C. AND GRIMSON,W. 2000. Learning patterns of activity using real-Time tracking. IEEE Tran. Pattern Anal. Mach. Intell. 22, 8, 747-757.
    • (2000) IEEE Tran. Pattern Anal. Mach. Intell. , vol.22 , Issue.8 , pp. 747-757
    • Stauffer, C.1    Grimson, W.2
  • 48
    • 35048836274 scopus 로고    scopus 로고
    • Activity recognition in the home using simple and ubiquitous sensors
    • Lecture Notes in Computer Science, Springer, Berlin, Springer, Berlin
    • TAPIA, E. M., INTILLE, S. S., AND LARSON, K. 2004. Activity recognition in the home using simple and ubiquitous sensors. In Proceedings of the 2nd Conference on Pervasive Computing. Lecture Notes in Computer Science, vol. 3001, Springer, Berlin. 158-175.
    • (2004) Proceedings of the 2nd Conference on Pervasive Computing , vol.3001 , pp. 158-175
    • Tapia, E.M.1    Intille, S.S.2    Larson, K.3
  • 52
    • 84935113569 scopus 로고
    • Error bounds for convolutional codes and an asymptotically optimum decoding algorithm
    • VITERBI, A. 1967. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Tran. Inf. Theor. 13, 2, 260-269.
    • (1967) IEEE Tran. Inf. Theor. , vol.13 , Issue.2 , pp. 260-269
    • Viterbi, A.1
  • 53
    • 48649084861 scopus 로고    scopus 로고
    • Mild cognitive impairment and everyday function: Evidence of reduced speed in performing instrumental activities of daily living
    • WADLEY, V. G., OKONKWO, O., CROWE, M., VANCE, D. E., ELGIA, J. M., BALL, K. K., AND OWSLEY, C. 2008. Mild cognitive impairment and everyday function: Evidence of reduced speed in performing instrumental activities of daily living. Amer. J. Geriatric Psych. 16, 5, 416-424.
    • (2008) Amer. J. Geriatric Psych. , vol.16 , Issue.5 , pp. 416-424
    • Wadley, V.G.1    Okonkwo, O.2    Crowe, M.3    Vance, D.E.4    Elgia, J.M.5    Ball, K.K.6    Owsley, C.7
  • 59
    • 0034826102 scopus 로고    scopus 로고
    • Spade: An efficient algorithm for mining frequent sequences
    • ZAKI, M. J. 2001. Spade: An efficient algorithm for mining frequent sequences. Mach. Learn. 42, 31-60.
    • (2001) Mach. Learn. , vol.42 , pp. 31-60
    • Zaki, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.