메뉴 건너뛰기




Volumn 26, Issue 5, 2013, Pages 941-947

A comprehensive methodology for determining the most informative mammographic features

Author keywords

BI RADS; Breast cancer; Decision support; Informatics; Mammography; Mutual information

Indexed keywords

BI-RADS; BREAST CANCER; DECISION SUPPORTS; INFORMATICS; MUTUAL INFORMATIONS;

EID: 84885419514     PISSN: 08971889     EISSN: 1618727X     Source Type: Journal    
DOI: 10.1007/s10278-013-9588-5     Document Type: Article
Times cited : (18)

References (36)
  • 1
    • 84885424249 scopus 로고    scopus 로고
    • American College of Radiology: Breast Imaging Reporting and Data System (BI-RADS) atlas, Reston, Va., 2003
    • American College of Radiology: Breast Imaging Reporting and Data System (BI-RADS) atlas, Reston, Va., 2003
  • 2
    • 0031116746 scopus 로고    scopus 로고
    • Mammography interpretation: The BI-RADS method
    • 9105186
    • D'Orsi C, Kopans D: Mammography interpretation: the BI-RADS method. American Family Physician 55:1548-1550, 1997
    • (1997) American Family Physician , vol.55 , pp. 1548-1550
    • D'Orsi, C.1    Kopans, D.2
  • 3
    • 71549159121 scopus 로고    scopus 로고
    • The ACR BI-RADS experience: Learning from history
    • 10.1016/j.jacr.2009.07.023
    • Burnside ES, et al: The ACR BI-RADS experience: learning from history. J American College of Radiology 6:851-860, 2009
    • (2009) J American College of Radiology , vol.6 , pp. 851-860
    • Burnside, E.S.1
  • 4
    • 0031830778 scopus 로고    scopus 로고
    • The Breast Imaging Reporting and Data System: Positive predictive value of mammographic features and final assessment categories
    • 9648759 10.2214/ajr.171.1.9648759 1:STN:280:DyaK1czhtFSqsQ%3D%3D
    • Liberman L, Abramson A, Squires F, Glassman J, Morris E, Dershaw D: The Breast Imaging Reporting and Data System: positive predictive value of mammographic features and final assessment categories. AJR Am J Roentgenol 171:35-40, 1998
    • (1998) AJR Am J Roentgenol , vol.171 , pp. 35-40
    • Liberman, L.1    Abramson, A.2    Squires, F.3    Glassman, J.4    Morris, E.5    Dershaw, D.6
  • 6
    • 0031662313 scopus 로고    scopus 로고
    • Level of suspicion of a mammographic lesion: Use of features defined by BI-RADS lexicon and correlation with large-core breast biopsy
    • 9709675 1:STN:280:DyaK1cznsFCjtA%3D%3D
    • Berube M, Curpen B, Ugolini P, Lalonde L, Ouimet-Oliva D: Level of suspicion of a mammographic lesion: use of features defined by BI-RADS lexicon and correlation with large-core breast biopsy. Can Assoc Radiol J 49:223-228, 1998
    • (1998) Can Assoc Radiol J , vol.49 , pp. 223-228
    • Berube, M.1    Curpen, B.2    Ugolini, P.3    Lalonde, L.4    Ouimet-Oliva, D.5
  • 7
    • 1842607583 scopus 로고    scopus 로고
    • Mammographic features and correlation with biopsy findings using 11-gauge stereotactic vacuum-assisted breast biopsy (SVABB)
    • Mendez A, Cabanillas F, Echenique M, Malekshamran K, Perez I, Ramos E: Mammographic features and correlation with biopsy findings using 11-gauge stereotactic vacuum-assisted breast biopsy (SVABB). Annals of Oncology 14:450-454, 2003
    • (2003) Annals of Oncology , vol.14 , pp. 450-454
    • Mendez, A.1    Cabanillas, F.2    Echenique, M.3    Malekshamran, K.4    Perez, I.5    Ramos, E.6
  • 8
    • 62649137776 scopus 로고    scopus 로고
    • Positive predictive value of specific mammographic findings according to reader and patient variables
    • 19164116 10.1148/radiol.2503080541
    • Venkatesan A, Chu P, Kerlikowske K, Sickles E, Smith-Bindman R: Positive predictive value of specific mammographic findings according to reader and patient variables. Radiology 250:648-657, 2009
    • (2009) Radiology , vol.250 , pp. 648-657
    • Venkatesan, A.1    Chu, P.2    Kerlikowske, K.3    Sickles, E.4    Smith-Bindman, R.5
  • 9
    • 77950117039 scopus 로고    scopus 로고
    • Comparison of logistic regression and artificial neural network models in breast cancer risk estimation
    • 19901087 10.1148/rg.301095057
    • Ayer T, Chhatwal J, Alagoz O, Kahn Jr, CE, Wood R, Burnside ES: Comparison of logistic regression and artificial neural network models in breast cancer risk estimation. RadioGraphics 30:13-22, 2010
    • (2010) RadioGraphics , vol.30 , pp. 13-22
    • Ayer, T.1    Chhatwal, J.2    Alagoz, O.3    Kahn, Jr.C.E.4    Wood, R.5    Burnside, E.S.6
  • 10
    • 63849134851 scopus 로고    scopus 로고
    • A logistic regression model based on the national mammography database format to aid breast cancer diagnosis
    • 19304723 10.2214/AJR.07.3345
    • Chhatwal J, Alagoz O, Lindstrom MJ, Kahn Jr, CE, Shaffer KA, Burnside ES: A logistic regression model based on the national mammography database format to aid breast cancer diagnosis. AJR Am J Roentgenol 192:1117-1127, 2009
    • (2009) AJR Am J Roentgenol , vol.192 , pp. 1117-1127
    • Chhatwal, J.1    Alagoz, O.2    Lindstrom, M.J.3    Kahn, Jr.C.E.4    Shaffer, K.A.5    Burnside, E.S.6
  • 11
    • 0043126911 scopus 로고    scopus 로고
    • Logistic regression and artificial neural network classification models: A methodology review
    • 12968784 10.1016/S1532-0464(03)00034-0
    • Dreiseitl S, Ohno-Machado L: Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 35:352-359, 2002
    • (2002) J Biomed Inform , vol.35 , pp. 352-359
    • Dreiseitl, S.1    Ohno-Machado, L.2
  • 12
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • 8892489 10.1016/S0895-4356(96)00002-9 1:STN:280:DyaK2s%2FkslGluw%3D%3D
    • Tu J: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 49:1225-1231, 1996
    • (1996) J Clin Epidemiol , vol.49 , pp. 1225-1231
    • Tu, J.1
  • 14
    • 0038713719 scopus 로고    scopus 로고
    • Mutual information as an index of diagnostic test performance
    • 12874659 1:STN:280:DC%2BD3szkt1ejtw%3D%3D
    • Benish W: Mutual information as an index of diagnostic test performance. Methods of Information in Medicine 42:260-264, 2003
    • (2003) Methods of Information in Medicine , vol.42 , pp. 260-264
    • Benish, W.1
  • 16
    • 26444453928 scopus 로고    scopus 로고
    • Mammographic breast density as an intermediate phenotype for breast cancer
    • 16198986 10.1016/S1470-2045(05)70390-9
    • Boyd N, et al: Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol 6:798-808, 2005
    • (2005) Lancet Oncol , vol.6 , pp. 798-808
    • Boyd, N.1
  • 17
    • 76149128688 scopus 로고    scopus 로고
    • Family history, mammographic density, and risk of breast cancer
    • 20142244 10.1158/1055-9965.EPI-09-0881
    • Martin L, et al: Family history, mammographic density, and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 19:456-463, 2010
    • (2010) Cancer Epidemiol Biomarkers Prev , vol.19 , pp. 456-463
    • Martin, L.1
  • 18
    • 0017067087 scopus 로고
    • Breast patterns as an index of risk for developing breast cancer
    • 179369 10.2214/ajr.126.6.1130 1:STN:280:DyaE283gtlGrsw%3D%3D
    • Wolfe J: Breast patterns as an index of risk for developing breast cancer. AJR Am J Roentgenol 126:1130-1137, 1976
    • (1976) AJR Am J Roentgenol , vol.126 , pp. 1130-1137
    • Wolfe, J.1
  • 19
    • 0037418128 scopus 로고    scopus 로고
    • Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography
    • 12558355 10.7326/0003-4819-138-3-200302040-00008
    • Carney P, et al: Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med 138:168-175, 2003
    • (2003) Ann Intern Med , vol.138 , pp. 168-175
    • Carney, P.1
  • 20
    • 0034608772 scopus 로고    scopus 로고
    • Breast density as a predictor of mammographic detection: Comparison of interval- and screen-detected cancers
    • 10880551 10.1093/jnci/92.13.1081 1:STN:280:DC%2BD3cvivFyrtA%3D%3D
    • Mandelson M, et al: Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst 92:1081-1087, 2000
    • (2000) J Natl Cancer Inst , vol.92 , pp. 1081-1087
    • Mandelson, M.1
  • 21
    • 0032738807 scopus 로고    scopus 로고
    • Wisconsin Cancer Reporting System: A population-based registry
    • 10555470 1:STN:280:DC%2BD3c%2FitlWksg%3D%3D
    • Foote M: Wisconsin Cancer Reporting System: a population-based registry. Wisconsin Medical Journal 98:17-18, 1999
    • (1999) Wisconsin Medical Journal , vol.98 , pp. 17-18
    • Foote, M.1
  • 22
    • 21244467519 scopus 로고    scopus 로고
    • On discriminative Bayesian network classifiers and logistic regression
    • Roos T, Wettig H, Grunwald P, Myllymaki P, Tirri H: On discriminative Bayesian network classifiers and logistic regression. Machine Learning 59:267-296, 2005
    • (2005) Machine Learning , vol.59 , pp. 267-296
    • Roos, T.1    Wettig, H.2    Grunwald, P.3    Myllymaki, P.4    Tirri, H.5
  • 23
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • 10.1023/A:1007413511361
    • Domingos P, Pazzani M: On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29:103-130, 1997
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 26
    • 84885424498 scopus 로고    scopus 로고
    • A novel test to determine the significance of neural selectivity to single and multiple potentially correlated stimulus features
    • Ince R, Mazzoni A, Bartels A, Logothetis N, Panzeri S: A novel test to determine the significance of neural selectivity to single and multiple potentially correlated stimulus features. J Neuroscience Methods, 2011
    • (2011) J Neuroscience Methods
    • Ince, R.1    Mazzoni, A.2    Bartels, A.3    Logothetis, N.4    Panzeri, S.5
  • 27
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
    • 3203132 10.2307/2531595 1:STN:280:DyaL1M%2Fns12ksQ%3D%3D
    • DeLong E, DeLong D, Clarke-Pearson D: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837-845, 1988
    • (1988) Biometrics , vol.44 , pp. 837-845
    • Delong, E.1    Delong, D.2    Clarke-Pearson, D.3
  • 28
    • 33745561205 scopus 로고    scopus 로고
    • An Introduction to variable and feature selection
    • Guyon I, Elisseeff A: An Introduction to variable and feature selection. J Machine Learning Research 3:1157-1182, 2003
    • (2003) J Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 29
    • 0035661275 scopus 로고    scopus 로고
    • Application of the mutual information criterion for feature selection in compuet-aided diagnosis
    • 11797941 10.1118/1.1418724 1:STN:280:DC%2BD38%2FntFOhug%3D%3D
    • Tourassi G, Frederick E, Markey M, Floyd C: Application of the mutual information criterion for feature selection in compuet-aided diagnosis. Medical Physics 28:2394-2402, 2001
    • (2001) Medical Physics , vol.28 , pp. 2394-2402
    • Tourassi, G.1    Frederick, E.2    Markey, M.3    Floyd, C.4
  • 31
    • 77957869898 scopus 로고    scopus 로고
    • Validation of results from knowledge discovery: Mass denisty as a predictor of breast cancer
    • 10.1007/s10278-009-9235-3
    • Woods R, Oliphant L, Shinki K, Page CD, Shavlik J, Burnside E: Validation of results from knowledge discovery: mass denisty as a predictor of breast cancer. J Digital Imaging 23:554-561, 2010
    • (2010) J Digital Imaging , vol.23 , pp. 554-561
    • Woods, R.1    Oliphant, L.2    Shinki, K.3    Page, C.D.4    Shavlik, J.5    Burnside, E.6
  • 32
    • 79952354871 scopus 로고    scopus 로고
    • The mammographic density of a mass is a significant predictor of breast cancer
    • 21177388 10.1148/radiol.10100328
    • Woods R, Sisney G, Salkowski L, Shinki K, Lin Y, Burnside E: The mammographic density of a mass is a significant predictor of breast cancer. Radiology 258:417-425, 2011
    • (2011) Radiology , vol.258 , pp. 417-425
    • Woods, R.1    Sisney, G.2    Salkowski, L.3    Shinki, K.4    Lin, Y.5    Burnside, E.6
  • 33
    • 77952590681 scopus 로고    scopus 로고
    • On the feature selection criterion based on an approximation of multimensional mutual information
    • 10.1109/TPAMI.2010.62
    • Balagani K, Phoha V: On the feature selection criterion based on an approximation of multimensional mutual information. IEEE Trans Pattern Analysis and Machine Intelligence 32:1342-1343, 2010
    • (2010) IEEE Trans Pattern Analysis and Machine Intelligence , vol.32 , pp. 1342-1343
    • Balagani, K.1    Phoha, V.2
  • 34
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • 10.1109/72.298224 1:STN:280:DC%2BD1c7gvFarsQ%3D%3D
    • Battiti R: Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Networks 5:537-550, 1994
    • (1994) IEEE Trans Neural Networks , vol.5 , pp. 537-550
    • Battiti, R.1
  • 35
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • 10.1109/TPAMI.2005.159
    • Peng H, Long F, Ding C: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Analysis and Machine Intelligence 27:1226-1238, 2005
    • (2005) IEEE Trans Pattern Analysis and Machine Intelligence , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.