-
1
-
-
4744373150
-
From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I
-
D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I, Jahresber. Dtsch. Math.-Ver. 105 (2003) 103-165.
-
(2003)
Jahresber. Dtsch. Math.-Ver.
, vol.105
, pp. 103-165
-
-
Horstmann, D.1
-
2
-
-
18644382851
-
Masse critique optimale pour le modéle de Keller-Segel dans 2
-
DOI 10.1016/j.crma.2004.08.011, PII S1631073X04004388
-
2, C. R. Acad. Sci., Paris 339 (2004) 611-616. (Pubitemid 41447527)
-
(2004)
Comptes Rendus Mathematique
, vol.339
, Issue.9
, pp. 611-616
-
-
Dolbeault, J.1
Perthame, B.2
-
4
-
-
34547418914
-
Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems
-
Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems, Differential Integral Equations 19 (2006) 841-876.
-
(2006)
Differential Integral Equations
, vol.19
, pp. 841-876
-
-
Sugiyama, Y.1
-
6
-
-
79957801928
-
Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion
-
J. Bedrossian, N. Rodríguez, A. L. Bertozzi, Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity 24 (2011) 1683-1714.
-
(2011)
Nonlinearity
, vol.24
, pp. 1683-1714
-
-
Bedrossian, J.1
Rodríguez, N.2
Bertozzi, A.L.3
-
7
-
-
0033163978
-
Diffusion, attraction and collapse
-
M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel, S. Venkataramani, Diffusion, attraction and collapse, Nonlinearity 12 (1999) 1071-1098.
-
(1999)
Nonlinearity
, vol.12
, pp. 1071-1098
-
-
Brenner, M.P.1
Constantin, P.2
Kadanoff, L.P.3
Schenkel, A.4
Venkataramani, S.5
-
8
-
-
33744783693
-
Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I. Overdamped models
-
P.-H. Chavanis, C. Sire, Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I. overdamped models, Phys. Rev. E 73 (2006) 066103.
-
(2006)
Phys. Rev. E
, vol.73
, pp. 066103
-
-
Chavanis, P.-H.1
Sire, C.2
-
9
-
-
77949277172
-
Critical chemotactic collapse
-
P. M. Lushnikov, Critical chemotactic collapse, Phys. Lett. A 374 (2010) 1678-1685.
-
(2010)
Phys. Lett. A
, vol.374
, pp. 1678-1685
-
-
Lushnikov, P.M.1
-
10
-
-
65249090848
-
Blow-up in multidimensional aggregation equations with mildly singular interaction kernels
-
A. L. Bertozzi, J. A. Carrillo, T. Laurent, Blow-up in multidimensional aggregation equations with mildly singular interaction kernels, Nonlinearity 22 (2009) 683-710.
-
(2009)
Nonlinearity
, vol.22
, pp. 683-710
-
-
Bertozzi, A.L.1
Carrillo, J.A.2
Laurent, T.3
-
11
-
-
77956257904
-
Self-similar blowup solutions to an aggregation equation in Rn
-
Y. Huang, A. L. Bertozzi, Self-similar blowup solutions to an aggregation equation in Rn, SIAM J. Appl. Math. 70 (2010) 2582-2603.
-
(2010)
SIAM J. Appl. Math.
, vol.70
, pp. 2582-2603
-
-
Huang, Y.1
Bertozzi, A.L.2
-
12
-
-
84861396161
-
Asymptotics of blowup solutions for the aggregation equation
-
Y. Huang, A. L. Bertozzi, Asymptotics of blowup solutions for the aggregation equation, Discrete Contin. Dyn. Syst. B 17 (2012) 1309-1331.
-
(2012)
Discrete Contin. Dyn. Syst. B
, vol.17
, pp. 1309-1331
-
-
Huang, Y.1
Bertozzi, A.L.2
-
13
-
-
84990616610
-
Asymptotically self-similar blow-up of semilinear heat equations
-
Y. Giga, R. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985) 297-319.
-
(1985)
Comm. Pure Appl. Math.
, vol.38
, pp. 297-319
-
-
Giga, Y.1
Kohn, R.2
-
14
-
-
1642361209
-
Self-similar solutions of the second kind in nonlinear filtration
-
G. I. Barenblatt, G. I. Sivashinskii, Self-similar solutions of the second kind in nonlinear filtration, J. Appl. Math. Mech. 33 (1970) 836-845. 1969.
-
(1969)
J. Appl. Math. Mech.
, vol.33
, pp. 836-845
-
-
Barenblatt, G.I.1
Sivashinskii, G.I.2
-
15
-
-
84974398985
-
Self-similar solutions of the second kind for the modified porous medium equation
-
J. Hulshof, J. L. Vázquez, Self-similar solutions of the second kind for the modified porous medium equation, European J. Appl. Math. 5 (3) (1994) 391-403.
-
(1994)
European J. Appl. Math.
, vol.5
, Issue.3
, pp. 391-403
-
-
Hulshof, J.1
Vázquez, J.L.2
-
16
-
-
70350090848
-
Grow-up rate and refined asymptotics for a two-dimensional Patlak-Keller-Segel model in a disk
-
N. Kavallaris, P. Souplet, Grow-up rate and refined asymptotics for a two-dimensional Patlak-Keller-Segel model in a disk, SIAM J. Math. Anal. 40 (2008/09) 1852-1881.
-
(2008)
SIAM J. Math. Anal.
, vol.40
, pp. 1852-1881
-
-
Kavallaris, N.1
Souplet, P.2
-
17
-
-
82255174186
-
Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion
-
A. Blanchet, P. Laurençot, Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion, Comm. Pure Appl. Math. 1 (2012) 47-60.
-
(2012)
Comm. Pure Appl. Math.
, vol.1
, pp. 47-60
-
-
Blanchet, A.1
Laurençot, P.2
-
18
-
-
56449112114
-
Discontinuous Galerkin methods for the chemotaxis and haptotaxis models
-
Y. Epshteyn, Discontinuous Galerkin methods for the chemotaxis and haptotaxis models, J. Comput. Appl. Math. 224 (2009) 168-181.
-
(2009)
J. Comput. Appl. Math.
, vol.224
, pp. 168-181
-
-
Epshteyn, Y.1
-
19
-
-
67349125503
-
Fully discrete analysis of a discontinuous finite element method for the Keller-Segel chemotaxis model
-
Y. Epshteyn, A. Izmirlioglu, Fully discrete analysis of a discontinuous finite element method for the Keller-Segel chemotaxis model, J. Sci. Comput. 40 (2009) 211-256.
-
(2009)
J. Sci. Comput.
, vol.40
, pp. 211-256
-
-
Epshteyn, Y.1
Izmirlioglu, A.2
-
20
-
-
67349163264
-
New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model
-
Y. Epshteyn, A. Kurganov, New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model, SIAM J. Numer. Anal. 47 (2008) 386-408.
-
(2008)
SIAM J. Numer. Anal.
, vol.47
, pp. 386-408
-
-
Epshteyn, Y.1
Kurganov, A.2
-
21
-
-
33749243493
-
A finite volume scheme for the Patlak-Keller-Segel chemotaxis model
-
DOI 10.1007/s00211-006-0024-3
-
F. Filbet, A finite volume scheme for the Patlak-Keller-Segel chemotaxis model, Numeri. Math. 104 (2006) 457-488. (Pubitemid 44483259)
-
(2006)
Numerische Mathematik
, vol.104
, Issue.4
, pp. 457-488
-
-
Filbet, F.1
-
22
-
-
0344629886
-
2D simulation of chemotactic bacteria aggregation
-
A. Marrocco, 2D simulation of chemotactic bacteria aggregation, ESAIM Math. Model. Numer. Anal. 37 (2003) 617-630.
-
(2003)
ESAIM Math. Model. Numer. Anal.
, vol.37
, pp. 617-630
-
-
Marrocco, A.1
-
23
-
-
34047151167
-
Conservative upwind finite element method for a simplified Keller-Segel system modelling chemotaxis
-
N. Saito, Conservative upwind finite element method for a simplified Keller-Segel system modelling chemotaxis, IMA J. Numer. Anal. 27 (2007) 332-365.
-
(2007)
IMA J. Numer. Anal.
, vol.27
, pp. 332-365
-
-
Saito, N.1
-
24
-
-
28444472731
-
Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis
-
DOI 10.1016/j.amc.2005.01.037, PII S0096300305000810
-
N. Saito, T. Suzuki, Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis, Appl. Math. Comput. 171 (2005) 72-90. (Pubitemid 41737289)
-
(2005)
Applied Mathematics and Computation
, vol.171
, Issue.1
, pp. 72-90
-
-
Saito, N.1
Suzuki, T.2
-
25
-
-
10244229064
-
Precise computations of chemotactic collapse using moving mesh methods
-
DOI 10.1016/j.jcp.2004.07.010, PII S0021999104002943
-
C. J. Budd, R. Carretero-González, R. D. Russell, Precise computations of chemotactic collapse using moving mesh methods, J. Comput. Phys. 202 (2005) 463-487. (Pubitemid 39620325)
-
(2005)
Journal of Computational Physics
, vol.202
, Issue.2
, pp. 463-487
-
-
Budd, C.J.1
Carretero-Gonzalez, R.2
Russell, R.D.3
-
26
-
-
55549135711
-
Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model
-
A. Blanchet, V. Calvez, J. A. Carillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model, SIAM J. Numer. Anal. 46 (2008) 691-721.
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, pp. 691-721
-
-
Blanchet, A.1
Calvez, V.2
Carillo, J.A.3
-
27
-
-
67349094576
-
Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system
-
J. Haskovec, C. Schmeiser, Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system, J. Stat. Phys. 135 (2009) 133-151.
-
(2009)
J. Stat. Phys.
, vol.135
, pp. 133-151
-
-
Haskovec, J.1
Schmeiser, C.2
-
29
-
-
84990575181
-
Nondegeneracy of blowup for semilinear heat equations
-
Y. Giga, R. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math. 42 (1989) 223-241.
-
(1989)
Comm. Pure Appl. Math.
, vol.42
, pp. 223-241
-
-
Giga, Y.1
Kohn, R.2
-
30
-
-
84861372019
-
The Patlak-Keller-Segel model and its variations: Properties of solutions via maximum principle
-
I. Kim, Y. Yao, The Patlak-Keller-Segel model and its variations: properties of solutions via maximum principle, SIAM J. Math. Anal. 44 (2012) 568-602.
-
(2012)
SIAM J. Math. Anal.
, vol.44
, pp. 568-602
-
-
Kim, I.1
Yao, Y.2
-
32
-
-
60449088258
-
Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions
-
A. Blanchet, J. A. Carrillo, P. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. 35 (2009) 133-168.
-
(2009)
Calc. Var.
, vol.35
, pp. 133-168
-
-
Blanchet, A.1
Carrillo, J.A.2
Laurençot, P.3
-
33
-
-
0030169093
-
Symmetric singularity formation in lubrication-type equations for interface motion
-
A. L. Bertozzi, Symmetric singularity formation in lubrication-type equations for interface motion, SIAM J. Appl. Math. 56 (1996) 681-714. (Pubitemid 126610893)
-
(1996)
SIAM Journal on Applied Mathematics
, vol.56
, Issue.3
, pp. 681-714
-
-
Bertozzi, A.L.1
-
34
-
-
0018659851
-
Smooth pycnophylactic interpolation for geographical regions
-
W. R. Tobler, Smooth pycnophylactic interpolation for geographical regions, J. Amer. Statist. Assoc. 74 (1979) 519-530.
-
(1979)
J. Amer. Statist. Assoc.
, vol.74
, pp. 519-530
-
-
Tobler, W.R.1
-
35
-
-
18144405976
-
Numerical methods for partial differential equations
-
Springer-Verlag, Berlin, Heidelberg, New York
-
P. Knabner, L. Angermann, Numerical Methods for Partial Differential Equations, in: Texts in Applied Mathematics, vol. 44, Springer-Verlag, Berlin, Heidelberg, New York, 2003.
-
(2003)
Texts in Applied Mathematics
, vol.44
-
-
Knabner, P.1
Angermann, L.2
|