메뉴 건너뛰기




Volumn 47, Issue 1, 2014, Pages 558-568

Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm

Author keywords

Entropy; Image segmentation; MRI brain image; Real coded genetic algorithm; Thresholds

Indexed keywords

ENTROPY; GENETIC ALGORITHMS; MAGNETIC RESONANCE IMAGING; MEDICAL IMAGING;

EID: 84885362891     PISSN: 02632241     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.measurement.2013.09.031     Document Type: Article
Times cited : (147)

References (21)
  • 2
    • 79957932796 scopus 로고    scopus 로고
    • Optimal segmentation of brain MRI based on adaptive bacterial foraging algorithm
    • P.D. Sathya, and R. Kayalvizhi Optimal segmentation of brain MRI based on adaptive bacterial foraging algorithm Neurocomputing 74 2011 2299 2313
    • (2011) Neurocomputing , vol.74 , pp. 2299-2313
    • Sathya, P.D.1    Kayalvizhi, R.2
  • 3
    • 77952121022 scopus 로고    scopus 로고
    • High speed parallel fuzzy C-mean algorithm for brain tumor segmentation
    • S. Murugavalli, and V. Rajamani High speed parallel fuzzy C-mean algorithm for brain tumor segmentation Journal of BIME 6 1 2006 29 34
    • (2006) Journal of BIME , vol.6 , Issue.1 , pp. 29-34
    • Murugavalli, S.1    Rajamani, V.2
  • 5
    • 54549102444 scopus 로고    scopus 로고
    • A novel technique for multilevel optimal magnetic resonance brain image thresholding using bacterial foraging
    • Madhubanti Maitra, and Amitava Chatterjee A novel technique for multilevel optimal magnetic resonance brain image thresholding using bacterial foraging Measurement 41 2008 1124 1134
    • (2008) Measurement , vol.41 , pp. 1124-1134
    • Maitra, M.1    Chatterjee, A.2
  • 8
    • 0018306059 scopus 로고
    • Threshold selection method from gray-level histograms
    • Nobuyuki Otsu A threshold selection method from gray-level histograms IEEE Transactions of Systems, Man, and Cybernetics SMC-9 1 1979 62 66 (Pubitemid 9413341)
    • (1979) IEEE Trans Syst Man Cybern , vol.SMC-9 , Issue.1 , pp. 62-66
    • Otsu Nobuyuki1
  • 9
    • 80052031412 scopus 로고    scopus 로고
    • Optimal multilevel thresholding using bacterial foraging algorithm
    • P.D. Sathya, and R. Kayalvizhi Optimal multilevel thresholding using bacterial foraging algorithm Expert Systems with Applications 38 2011 15549 15564
    • (2011) Expert Systems with Applications , vol.38 , pp. 15549-15564
    • Sathya, P.D.1    Kayalvizhi, R.2
  • 11
    • 77949425289 scopus 로고    scopus 로고
    • Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm
    • H. Gao, X. Wenbo, J. Sun, and Y. Tang Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm IEEE Transaction of Instrumentation and Measurement 59 4 2010 934 946
    • (2010) IEEE Transaction of Instrumentation and Measurement , vol.59 , Issue.4 , pp. 934-946
    • Gao, H.1    Wenbo, X.2    Sun, J.3    Tang, Y.4
  • 12
    • 79151482192 scopus 로고    scopus 로고
    • A new social and momentum component adaptive PSO algorithm for image segmentation
    • Akhilesh Chander, Amitava Chatterjee, and Patrick Siarry A new social and momentum component adaptive PSO algorithm for image segmentation Expert Systems with Applications 38 2011 4998 5004
    • (2011) Expert Systems with Applications , vol.38 , pp. 4998-5004
    • Chander, A.1    Chatterjee, A.2    Siarry, P.3
  • 13
    • 79959937272 scopus 로고    scopus 로고
    • Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation
    • M.H. Horng Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation Expert Systems with Applications 38 2011 13785 13791
    • (2011) Expert Systems with Applications , vol.38 , pp. 13785-13791
    • Horng, M.H.1
  • 14
    • 79953661326 scopus 로고    scopus 로고
    • Modified bacterial foraging algorithm based multilevel thresholding for image segmentation
    • P.D. Sathya, and R. Kayalvizhi Modified bacterial foraging algorithm based multilevel thresholding for image segmentation Engineering Applications of Artificial Intelligence 24 2011 595 615
    • (2011) Engineering Applications of Artificial Intelligence , vol.24 , pp. 595-615
    • Sathya, P.D.1    Kayalvizhi, R.2
  • 15
    • 80051471160 scopus 로고    scopus 로고
    • An improved scheme for minimum cross entropy threshold selection based on genetic algorithm
    • K. Tang, X. Yuan, T. Sun, J. Yang, and S. Gao An improved scheme for minimum cross entropy threshold selection based on genetic algorithm Knowledge-Based Systems 24 2011 1131 1138
    • (2011) Knowledge-Based Systems , vol.24 , pp. 1131-1138
    • Tang, K.1    Yuan, X.2    Sun, T.3    Yang, J.4    Gao, S.5
  • 18
    • 57349106504 scopus 로고    scopus 로고
    • Optimal reactive power dispatch using self adaptive real coded genetic algorithm
    • P. Subbaraj, and P.N. Rajnarayanan Optimal reactive power dispatch using self adaptive real coded genetic algorithm Electric Power Systems Research 79 2 2009 374 381
    • (2009) Electric Power Systems Research , vol.79 , Issue.2 , pp. 374-381
    • Subbaraj, P.1    Rajnarayanan, P.N.2
  • 19
    • 60849123752 scopus 로고    scopus 로고
    • Evolutionary algorithms based design of multivariable PID controller
    • M. Willjuice Irudhayarajan, and S. Baskar Evolutionary algorithms based design of multivariable PID controller Expert Systems with Applications 36 5 2009 9159 9167
    • (2009) Expert Systems with Applications , vol.36 , Issue.5 , pp. 9159-9167
    • Willjuice Irudhayarajan, M.1    Baskar, S.2
  • 20
    • 77957902944 scopus 로고    scopus 로고
    • Enhancement of self-adaptive real-coded genetic algorithm using taguchi method for economic dispatch problem
    • P. Subbaraj, R. Rengaraj, and S. Salivahanan Enhancement of self-adaptive real-coded genetic algorithm using taguchi method for economic dispatch problem Applied Soft Computing 11 1 2011 83 92
    • (2011) Applied Soft Computing , vol.11 , Issue.1 , pp. 83-92
    • Subbaraj, P.1    Rengaraj, R.2    Salivahanan, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.