-
3
-
-
0242694349
-
Contributions to the duality of abelian topological groups and to the theory of nuclear groups
-
L. Aussenhofer, Contributions to the Duality of Abelian Topological Groups and to the Theory of Nuclear Groups, Diss. Math. 384, 1999.
-
(1999)
Diss. Math.
, vol.384
-
-
Aussenhofer, L.1
-
4
-
-
84862504847
-
Smooth Fréchet globalizations of Harish-Chandra modules
-
J. Bernstein and B. Krötz, Smooth Fréchet globalizations of Harish-Chandra modules, to appear in Israel J. Math.
-
Israel J. Math
-
-
Bernstein, J.1
Krötz, B.2
-
5
-
-
3242810561
-
Differential calculus over general base fields and rings
-
MR 2069671. DOI 10.1016/S0723-0869(04)80006-9
-
W. Bertram, H. Glöckner, and K.-H. Neeb, Differential calculus over general base fields and rings, Expo. Math. 22 (2004), 213-282. MR 2069671. DOI 10.1016/S0723-0869(04)80006-9.
-
(2004)
Expo. Math.
, vol.22
, pp. 213-282
-
-
Bertram, W.1
Glöckner, H.2
Neeb, K.-H.3
-
6
-
-
84894147228
-
Continuity of convolution of test functions on Lie groups
-
published electronically 3 October, DOI 10.4153/CJM-2012-035-6
-
L. Birth and H. Glöckner, Continuity of convolution of test functions on Lie groups, Canadian J. Math., published electronically 3 October 2012. DOI 10.4153/CJM-2012-035-6.
-
(2012)
Canadian J. Math.
-
-
Birth, L.1
Glöckner, H.2
-
7
-
-
0002178646
-
Analytic functions in topological vector spaces
-
MR 0313811
-
J. Bochnak and J. Siciak, Analytic functions in topological vector spaces, Studia Math. 39 (1971), 77-112. MR 0313811.
-
(1971)
Studia Math.
, vol.39
, pp. 77-112
-
-
Bochnak, J.1
Siciak, J.2
-
8
-
-
84971189199
-
The countable neighbourhood property and tensor products
-
MR 0806751. DOI 10.1017/S0013091500022641
-
J. Bonet, The countable neighbourhood property and tensor products, Proc. Edinburgh Math. Soc. (2) 28 (1985), 207-215. MR 0806751. DOI 10.1017/S0013091500022641.
-
(1985)
Proc. Edinburgh Math. Soc. (2)
, vol.28
, pp. 207-215
-
-
Bonet, J.1
-
9
-
-
0003840120
-
Elements of mathematics: Topological vector spaces, chapters 1-5
-
Springer, Berlin. MR 0910295
-
N. Bourbaki, Elements of Mathematics: Topological Vector Spaces, chapters 1-5, Elem. Math., Springer, Berlin, 1987. MR 0910295.
-
(1987)
Elem. Math.
-
-
Bourbaki, N.1
-
10
-
-
0003539523
-
General topology, 2nd ed
-
Heldermann, Berlin. MR 1039321
-
R. Engelking, General Topology, 2nd ed., Sigma Ser. Pure Math. 6, Heldermann, Berlin, 1989. MR 1039321.
-
(1989)
Sigma Ser. Pure Math.
, vol.6
-
-
Engelking, R.1
-
11
-
-
77956934204
-
Some aspects of the theory of locally convex inductive limits
-
North-Holland, Amsterdam. MR 0565407
-
K. Floret, "Some aspects of the theory of locally convex inductive limits" in Functional Analysis: Surveys and Recent Results, II (Paderborn, Germany, 1979), North-Holland Math. Stud. 38, North-Holland, Amsterdam, 1980, 205-237. MR 0565407.
-
(1980)
Functional Analysis: Surveys and Recent Results, II (Paderborn, Germany, 1979), North-Holland Math. Stud.
, vol.38
, pp. 205-237
-
-
Floret, K.1
-
12
-
-
0002197970
-
ω-spaces
-
Topology Proc, Auburn, Ala. MR 0540599
-
ω-spaces" in Proceedings of the 1977 Topology Conference (Baton Rouge, 1977), I, Topol. Proc. 2, Topology Proc, Auburn, Ala., 1978, 111-124. MR 0540599.
-
(1978)
Proceedings of the 1977 Topology Conference (Baton Rouge, 1977), I, Topol. Proc.
, vol.2
, pp. 111-124
-
-
Franklin, S.P.1
Smith Thomas, B.V.2
-
13
-
-
0005732499
-
Vecteurs analytiques dans les représentations des groupes de Lie
-
MR 0119104
-
L. Gårding, Vecteurs analytiques dans les représentations des groupes de Lie, Bull. Soc. Math. France 88 (1960), 73-93. MR 0119104.
-
(1960)
Bull. Soc. Math. France
, vol.88
, pp. 73-93
-
-
Gårding, L.1
-
14
-
-
80955136955
-
Analytic factorization of Lie group representations
-
MR 2854718. DOI 10.1016/j.jfa.2011.10.002
-
H. Gimperlein, B. Krötz, and C. Lienau, Analytic factorization of Lie group representations, J. Funct. Anal. 262 (2012), 667-681. MR 2854718. DOI 10.1016/j.jfa.2011.10.002.
-
(2012)
J. Funct. Anal.
, vol.262
, pp. 667-681
-
-
Gimperlein, H.1
Krötz, B.2
Lienau, C.3
-
15
-
-
85012542311
-
Analytic representation theory of Lie groups: General theory and analytic globalizations of Harish-Chandra modules
-
MR 2834734. DOI 10.1112/S0010437X11005392
-
H. Gimperlein, B. Krötz, and H. Schlichtkrull, Analytic representation theory of Lie groups: General theory and analytic globalizations of Harish-Chandra modules, Comp. Math. 147 (2011), 1581-1607. MR 2834734. DOI 10.1112/S0010437X11005392.
-
(2011)
Comp. Math.
, vol.147
, pp. 1581-1607
-
-
Gimperlein, H.1
Krötz, B.2
Schlichtkrull, H.3
-
16
-
-
0036808583
-
Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups
-
MR 1934608. DOI 10.1006/jfan.2002.3942
-
H. Glöckner, Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Anal. 194 (2002), 347-409. MR 1934608. DOI 10.1006/jfan.2002.3942.
-
(2002)
J. Funct. Anal.
, vol.194
, pp. 347-409
-
-
Glöckner, H.1
-
17
-
-
0002734990
-
Lie groups without completeness restrictions
-
Polish Acad. Sci., Warsaw. MR 1911979
-
"Lie groups without completeness restrictions" in Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups (Bȩdlewo, Poland, 2000), Banach Center Publ. 55, Polish Acad. Sci., Warsaw, 2002, 43-59. MR 1911979.
-
(2002)
Geometry and Analysis on Finite- And Infinite-Dimensional Lie Groups (Bȩdlewo, Poland, 2000), Banach Center Publ.
, vol.55
, pp. 43-59
-
-
-
18
-
-
0036446267
-
Algebras whose groups of units are Lie groups
-
MR 1948922. DOI 10.4064/sm153-2-4
-
Algebras whose groups of units are Lie groups, Studia Math. 153 (2002), 147-177. MR 1948922. DOI 10.4064/sm153-2-4.
-
(2002)
Studia Math.
, vol.153
, pp. 147-177
-
-
-
19
-
-
0142153695
-
Lie groups of measurable mappings
-
MR 2005280. DOI 10.4153/CJM-2003-039-9
-
Lie groups of measurable mappings, Canad. J. Math. 55 (2003), 969-999. MR 2005280. DOI 10.4153/CJM-2003-039-9.
-
(2003)
Canad. J. Math.
, vol.55
, pp. 969-999
-
-
-
20
-
-
33847398770
-
Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories
-
MR 2310802. DOI 10.1016/j.jfa.2006.12.018
-
Direct limits of infinite-dimensional Lie groups compared to direct limits in related categories, J. Funct. Anal. 245 (2007), 19-61. MR 2310802. DOI 10.1016/j.jfa.2006.12.018.
-
(2007)
J. Funct. Anal.
, vol.245
, pp. 19-61
-
-
-
21
-
-
84855892800
-
Continuity of bilinear maps on direct sums of topological vector spaces
-
MR 2876398. DOI 10.1016/j.jfa.2011.12.018
-
Continuity of bilinear maps on direct sums of topological vector spaces, J. Funct. Anal. 262 (2012), 2013-2030. MR 2876398. DOI 10.1016/j.jfa.2011.12. 018.
-
(2012)
J. Funct. Anal.
, vol.262
, pp. 2013-2030
-
-
-
24
-
-
77956118264
-
Final group topologies, Kac-Moody groups and Pontryagin duality
-
MR 2684413. DOI 10.1007/s11856-010-0038-5
-
H. Glöckner, T. Hartnick, and Ralf Köhl, Final group topologies, Kac-Moody groups and Pontryagin duality, Israel J. Math. 177 (2010), 49-101. MR 2684413. DOI 10.1007/s11856-010-0038-5.
-
(2010)
Israel J. Math.
, vol.177
, pp. 49-101
-
-
Glöckner, H.1
Hartnick, T.2
Köhl, R.3
-
25
-
-
84869175032
-
When unit groups of continuous inverse algebras are regular Lie groups
-
MR 2997582
-
H. Glöckner and K.-H. Neeb, When unit groups of continuous inverse algebras are regular Lie groups, Studia Math. 211 (2012), 95-109. MR 2997582.
-
(2012)
Studia Math.
, vol.211
, pp. 95-109
-
-
Glöckner, H.1
Neeb, K.-H.2
-
27
-
-
0001608465
-
On Levi's problem and the imbedding of real-analytic manifolds
-
MR 0098847
-
H. Grauert, On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math. (2) 68 (1958), 460-472. MR 0098847.
-
(1958)
Ann. of Math. (2)
, vol.68
, pp. 460-472
-
-
Grauert, H.1
-
28
-
-
84966236065
-
The inverse function theorem of Nash and Moser
-
MR 0656198. DOI 10.1090/S0273-0979-1982-15004-2
-
R. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N. S.) 7 (1982), 65-222. MR 0656198. DOI 10.1090/S0273-0979-1982- 15004-2.
-
(1982)
Bull. Amer. Math. Soc. (N. S.)
, vol.7
, pp. 65-222
-
-
Hamilton, R.1
-
29
-
-
0007448360
-
Analyticity in infinite-dimensional spaces
-
de Gruyter, Berlin. MR 0986066. DOI 10.1515/9783110856941
-
M. Hervé, Analyticity in Infinite-Dimensional Spaces, de Gruyter Stud. Math. 10, de Gruyter, Berlin, 1989. MR 0986066. DOI 10.1515/9783110856941.
-
(1989)
De Gruyter Stud. Math.
, vol.10
-
-
Hervé, M.1
-
30
-
-
0035743440
-
Inductive limits of topologies, their direct product, and problems related to algebraic structures
-
MR 1878717
-
T. Hirai, H. Shimomura, N. Tatsuuma, and E. Hirai, Inductive limits of topologies, their direct product, and problems related to algebraic structures, J. Math. Kyoto Univ. 41 (2001), 475-505. MR 1878717.
-
(2001)
J. Math. Kyoto Univ.
, vol.41
, pp. 475-505
-
-
Hirai, T.1
Shimomura, H.2
Tatsuuma, N.3
Hirai, E.4
-
31
-
-
76749171436
-
The Lie theory of connected pro-Lie goups: A structure theory for pro-Lie algebras, pro-Lie groups, and connected locally compact groups
-
Eur. Math. Soc. (EMS), Zürich. MR 2337107. DOI 10.4171/032
-
K. H. Hofmann and S. A. Morris, The Lie Theory of Connected Pro-Lie Goups: A Structure Theory for pro-Lie Algebras, pro-Lie groups, and Connected Locally Compact Groups, EMS Tracts Math. 2, Eur. Math. Soc. (EMS), Zürich, 2007. MR 2337107. DOI 10.4171/032.
-
(2007)
EMS Tracts Math.
, vol.2
-
-
Hofmann, K.H.1
Morris, S.A.2
-
32
-
-
0003996158
-
-
B. G. Teubner, Stuttgart. MR 0632257
-
H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981. MR 0632257.
-
(1981)
Locally Convex Spaces
-
-
Jarchow, H.1
-
33
-
-
0003360439
-
Topological vector spaces, II
-
Springer, New York. MR 0551623
-
G. Köthe, Topological Vector Spaces, II, Grundlehren Math. Wiss. 237, Springer, New York, 1979. MR 0551623.
-
(1979)
Grundlehren Math. Wiss.
, vol.237
-
-
Köthe, G.1
-
34
-
-
0003023917
-
The convenient setting of global analysis
-
Amer. Math. Soc., Providence. MR 1471480
-
A. Kriegl and P. W. Michor, The Convenient Setting of Global Analysis, Math. Surv. Monogr. 53, Amer. Math. Soc., Providence, 1997. MR 1471480.
-
(1997)
Math. Surv. Monogr.
, vol.53
-
-
Kriegl, A.1
Michor, P.W.2
-
35
-
-
77956190327
-
On differentiable vectors for representations of infinite dimensional Lie groups
-
MR 2719276. DOI 10.1016/j.jfa.2010.07.020
-
K.-H. Neeb, On differentiable vectors for representations of infinite dimensional Lie groups, J. Funct. Anal. 259 (2010), 2814-2855. MR 2719276. DOI 10.1016/j.jfa.2010.07.020.
-
(2010)
J. Funct. Anal.
, vol.259
, pp. 2814-2855
-
-
Neeb, K.-H.1
-
36
-
-
84858984598
-
On analytic vectors for unitary representations of infinite dimensional Lie groups
-
MR 2961842. DOI 10.5802/aif.2660
-
On analytic vectors for unitary representations of infinite dimensional Lie groups, Ann. Inst. Fournier (Grenoble) 61 (2011), 1839-1879. MR 2961842. DOI 10.5802/aif.2660.
-
(2011)
Ann. Inst. Fournier (Grenoble)
, vol.61
, pp. 1839-1879
-
-
-
37
-
-
0040381643
-
Manifolds of differentiable mappings
-
Shiva, Nantwich, England. MR 0583436
-
P. W. Michor, Manifolds of Differentiable Mappings, Shiva Math. Ser. 3, Shiva, Nantwich, England, 1980. MR 0583436.
-
(1980)
Shiva Math. Ser.
, vol.3
-
-
Michor, P.W.1
-
38
-
-
0001335921
-
Remarks on infinite-dimensional Lie groups
-
North-Holland, Amsterdam. MR 0830252
-
J. Milnor, "Remarks on infinite-dimensional Lie groups" in Relativity, Groups and Topology, II (Les Houches, 1983), North-Holland, Amsterdam, 1984, 1007-1057. MR 0830252.
-
Relativity, Groups and Topology, II (Les Houches, 1983)
, vol.1984
, pp. 1007-1057
-
-
Milnor, J.1
-
39
-
-
0004057553
-
-
McGraw-Hill Ser. in Higher Math., McGraw-Hill, New York. MR 0365062
-
W. Rudin, Functional Analysis, McGraw-Hill Ser. in Higher Math., McGraw-Hill, New York, 1973. MR 0365062.
-
(1973)
Functional Analysis
-
-
Rudin, W.1
-
40
-
-
0003944687
-
Topological vector spaces, 2nd ed
-
Springer, New York. MR 1741419. DOI 10.1007/978-1-4612-1468-7
-
H. H. Schaefer and M. P. Wolf, Topological Vector Spaces, 2nd ed., Grad. Texts in Math. 3, Springer, New York, 1999. MR 1741419. DOI 10.1007/978-1-4612- 1468-7.
-
(1999)
Grad. Texts in Math.
, vol.3
-
-
Schaefer, H.H.1
Wolf, M.P.2
-
41
-
-
0000755272
-
On the convex compactness property for the strong operator topology
-
MR 1258579
-
J. Voigt, On the convex compactness property for the strong operator topology, Note Mat. 12 (1992), 259-269. MR 1258579.
-
(1992)
Note Mat.
, vol.12
, pp. 259-269
-
-
Voigt, J.1
-
42
-
-
0039993830
-
Inductive limit of general linear groups
-
MR 1670011
-
A. Yamasaki, Inductive limit of general linear groups, J. Math. Kyoto Univ. 38 (1998), 769-779. MR 1670011.
-
(1998)
J. Math. Kyoto Univ.
, vol.38
, pp. 769-779
-
-
Yamasaki, A.1
|