메뉴 건너뛰기




Volumn , Issue , 2008, Pages 367-391

Joint models for high-dimensional longitudinal data

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84885068091     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (4)

References (84)
  • 1
    • 0031475939 scopus 로고    scopus 로고
    • A model for repeated measurements of a multivariate binary response
    • Agresti, A. (1997). A model for repeated measurements of a multivariate binary response. Journal of the American Statistical Association 92, 315–321.
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 315-321
    • Agresti, A.1
  • 2
    • 0347724076 scopus 로고    scopus 로고
    • Multivariate longitudinal models for complex change processes
    • Beckett, L. A., Tancredi, D. J., and Wilson, R. S. (2004). Multivariate longitudinal models for complex change processes. Statistics in Medicine 23, 213–239.
    • (2004) Statistics in Medicine , vol.23 , pp. 213-239
    • Beckett, L.A.1    Tancredi, D.J.2    Wilson, R.S.3
  • 3
    • 0024999301 scopus 로고
    • Age changes in pure-tone hearing thresholds in a longitudinal study of normal human aging
    • Brant, L. J. and Fozard, J. L. (1990). Age changes in pure-tone hearing thresholds in a longitudinal study of normal human aging. Journal of the Acoustical Society of America 88, 813–820.
    • (1990) Journal of the Acoustical Society of America , vol.88 , pp. 813-820
    • Brant, L.J.1    Fozard, J.L.2
  • 5
    • 0000484191 scopus 로고
    • Structured latent curve models
    • C. M. Caudras and C. R. Rao (eds.), Amsterdam: Elsevier
    • Browne, M. W. (1993). Structured latent curve models. In C. M. Caudras and C. R. Rao (eds.), Multivariate Analysis: Future Directions 2, pp. 171–198. Amsterdam: Elsevier.
    • (1993) Multivariate Analysis: Future Directions , vol.2 , pp. 171-198
    • Browne, M.W.1
  • 6
    • 0002643508 scopus 로고
    • Models for learning data
    • L. M. Collins and J. L. Horn (eds.), Unanswered Questions, Future Directions, Chapter 4. Washington, DC: American Psychological Association
    • Browne, M. W. and Du Toit, S. H. C. (1991). Models for learning data. In L. M. Collins and J. L. Horn (eds.), Best Methods for the Analysis of Change: Recent Advances, Unanswered Questions, Future Directions, Chapter 4. Washington, DC: American Psychological Association.
    • (1991) Best Methods for the Analysis of Change: Recent Advances
    • Browne, M.W.1    Du Toit, S.H.C.2
  • 8
    • 0035863141 scopus 로고    scopus 로고
    • Analysis of longitudinally observed irregularly timed multivariate outcomes: Regression with focus on cross-component correlation
    • Carey, V. and Rosner, B. A. (2001). Analysis of longitudinally observed irregularly timed multivariate outcomes: Regression with focus on cross-component correlation. Statistics in Medicine 20, 21–30.
    • (2001) Statistics in Medicine , vol.20 , pp. 21-30
    • Carey, V.1    Rosner, B.A.2
  • 9
    • 0000429149 scopus 로고
    • Modelling multivariate binary data with alternating logistic regressions
    • Carey, V., Zeger, S., and Diggle, P. (1993). Modelling multivariate binary data with alternating logistic regressions. Biometrika 80, 517–526.
    • (1993) Biometrika , vol.80 , pp. 517-526
    • Carey, V.1    Zeger, S.2    Diggle, P.3
  • 10
    • 0008974359 scopus 로고    scopus 로고
    • Estimating correlation by using a general linear mixed model: Evaluation of the relationship between the concentration of HIV-1 RNA in blood and semen
    • Chakraborty, H., Helms, R. W., Sen, P. K., and Cohen, M. S. (2003). Estimating correlation by using a general linear mixed model: Evaluation of the relationship between the concentration of HIV-1 RNA in blood and semen. Statistics in Medicine 22, 1457–1464.
    • (2003) Statistics in Medicine , vol.22 , pp. 1457-1464
    • Chakraborty, H.1    Helms, R.W.2    Sen, P.K.3    Cohen, M.S.4
  • 11
    • 8644286416 scopus 로고    scopus 로고
    • Self-modeling regression for multivariate curve data
    • Coull, B. A. and Staudenmayer, J. (2004). Self-modeling regression for multivariate curve data. Statistica Sinica 14, 695–711.
    • (2004) Statistica Sinica , vol.14 , pp. 695-711
    • Coull, B.A.1    Staudenmayer, J.2
  • 12
    • 0004361563 scopus 로고    scopus 로고
    • Combining autoregressive and latent curve models
    • L. M. Collins and A. G. Sayer (eds.), Chapter 4. Washington, DC: American Psychological Association
    • Curran, P. J. and Bollen, K. A. (2001). Combining autoregressive and latent curve models. In L. M. Collins and A. G. Sayer (eds.), New Methods for the Analysis of Change, Chapter 4. Washington, DC: American Psychological Association.
    • (2001) New Methods for the Analysis of Change
    • Curran, P.J.1    Bollen, K.A.2
  • 13
    • 0023021371 scopus 로고
    • Global cross-ratio models for bivariate, discrete, ordered responses
    • Dale, J. R. (1986). Global cross-ratio models for bivariate, discrete, ordered responses. Biometrics 42, 721–727.
    • (1986) Biometrics , vol.42 , pp. 721-727
    • Dale, J.R.1
  • 14
    • 0036139686 scopus 로고    scopus 로고
    • Regression analysis of multiple-source longitudinal outcomes: A Stirling County depression study
    • Daskalakis, C., Laird, N. M., and Murphy, J. M. (2002). Regression analysis of multiple-source longitudinal outcomes: A Stirling County depression study. American Journal of Epidemiology 155, 88–94.
    • (2002) American Journal of Epidemiology , vol.155 , pp. 88-94
    • Daskalakis, C.1    Laird, N.M.2    Murphy, J.M.3
  • 17
    • 0000013486 scopus 로고    scopus 로고
    • Multivariate latent growth curve analysis of adolescent substance abuse
    • Duncan, S. C. and Duncan, T. E. (1996). Multivariate latent growth curve analysis of adolescent substance abuse. Structural Equation Modeling 3, 323–347.
    • (1996) Structural Equation Modeling , vol.3 , pp. 323-347
    • Duncan, S.C.1    Duncan, T.E.2
  • 18
    • 0344417798 scopus 로고    scopus 로고
    • Alternative structural models for multivariate longitudinal data
    • Ferrer, E. and McArdle, J. J. (2003). Alternative structural models for multivariate longitudinal data. Structural Equation Modeling 10, 493–524.
    • (2003) Structural Equation Modeling , vol.10 , pp. 493-524
    • Ferrer, E.1    McArdle, J.J.2
  • 19
    • 5044220677 scopus 로고    scopus 로고
    • Joint modelling of multivariate longitudinal profiles: Pitfalls of the random-effects approach
    • Fieuws, S. and Verbeke, G. (2004). Joint modelling of multivariate longitudinal profiles: Pitfalls of the random-effects approach. Statistics in Medicine 23, 3093–3104.
    • (2004) Statistics in Medicine , vol.23 , pp. 3093-3104
    • Fieuws, S.1    Verbeke, G.2
  • 20
    • 33745246056 scopus 로고    scopus 로고
    • Pairwise fitting of mixed models for the joint modelling of multivariate longitudinal profiles
    • Fieuws, S. and Verbeke, G. (2006). Pairwise fitting of mixed models for the joint modelling of multivariate longitudinal profiles. Biometrics 62, 424–431.
    • (2006) Biometrics , vol.62 , pp. 424-431
    • Fieuws, S.1    Verbeke, G.2
  • 21
  • 22
    • 33746217163 scopus 로고    scopus 로고
    • High-dimensional multivariate mixed models for binary questionnaire data
    • Fieuws, S., Verbeke, G., Boen, F., and Delecluse, C. (2006). High-dimensional multivariate mixed models for binary questionnaire data. Applied Statistics 55, 449–460.
    • (2006) Applied Statistics , vol.55 , pp. 449-460
    • Fieuws, S.1    Verbeke, G.2    Boen, F.3    Delecluse, C.4
  • 23
    • 45849092498 scopus 로고    scopus 로고
    • Predicting renal graft failure using multivariate longitudinal profiles
    • Fieuws, S., Verbeke G., Maes, B., and Vanrenterghem, Y. (2007). Predicting renal graft failure using multivariate longitudinal profiles. Biostatistics (doi:10.1093/biostatistics/kxm041).
    • (2007) Biostatistics
    • Fieuws, S.1    Verbeke, G.2    Maes, B.3    Vanrenterghem, Y.4
  • 24
    • 0001067751 scopus 로고
    • General class of covariance structures for two or more repeated factors in longitudinal data analysis
    • Galecki, A. T. (1994). General class of covariance structures for two or more repeated factors in longitudinal data analysis. Communications in Statistics — Theory and Methods 23, 3105–3119.
    • (1994) Communications in Statistics — Theory and Methods , vol.23 , pp. 3105-3119
    • Galecki, A.T.1
  • 27
    • 0031656414 scopus 로고    scopus 로고
    • Estimating a treatment effect from multidimensional longitudinal data
    • Gray, S. M. and Brookmeyer, R. (1998). Estimating a treatment effect from multidimensional longitudinal data. Biometrics 54, 976–988.
    • (1998) Biometrics , vol.54 , pp. 976-988
    • Gray, S.M.1    Brookmeyer, R.2
  • 28
    • 1542532216 scopus 로고    scopus 로고
    • Multidimensional longitudinal data: Estimating a treatment effect from continuous, discrete or time-to-event response variables
    • Gray, S. M. and Brookmeyer, R. (2000). Multidimensional longitudinal data: Estimating a treatment effect from continuous, discrete or time-to-event response variables. Journal of the American Statistical Association 95, 396–406.
    • (2000) Journal of the American Statistical Association , vol.95 , pp. 396-406
    • Gray, S.M.1    Brookmeyer, R.2
  • 29
    • 84993730752 scopus 로고    scopus 로고
    • A multivariate generalized linear mixed model for joint modelling of clustered outcomes in the exponential family
    • Gueorguieva, R. (2001). A multivariate generalized linear mixed model for joint modelling of clustered outcomes in the exponential family. Statistical Modelling 1, 177–193.
    • (2001) Statistical Modelling , vol.1 , pp. 177-193
    • Gueorguieva, R.1
  • 31
    • 0031015582 scopus 로고    scopus 로고
    • Modelling repeated-series longitudinal data
    • Heitjan, D. F. and Sharma, D. (1997). Modelling repeated-series longitudinal data. Statistics in Medicine 16, 347–355.
    • (1997) Statistics in Medicine , vol.16 , pp. 347-355
    • Heitjan, D.F.1    Sharma, D.2
  • 32
    • 85057439514 scopus 로고    scopus 로고
    • Marginalised transition random effects models for multivariate longitudinal binary data
    • Alexandria, VA: American Statistical Association
    • Ilk, O. and Daniels, M. (2003). Marginalised transition random effects models for multivariate longitudinal binary data. In Proceedings of the ASA, Section on Biometrics, pp. 1927–1931. Alexandria, VA: American Statistical Association.
    • (2003) Proceedings of the ASA, Section on Biometrics , pp. 1927-1931
    • Ilk, O.1    Daniels, M.2
  • 34
    • 85004788265 scopus 로고
    • Hierarchical relations between methods for simultaneous component analysis and a technique for rotation to a simple simultaneous structure
    • Kiers, H. A. L. and ten Berge, J. M. F. (1994). Hierarchical relations between methods for simultaneous component analysis and a technique for rotation to a simple simultaneous structure. British Journal of Mathematical and Statistical Psychology 47, 109–126.
    • (1994) British Journal of Mathematical and Statistical Psychology , vol.47 , pp. 109-126
    • Kiers, H.A.L.1    Ten Berge, J.M.F.2
  • 35
    • 0001718376 scopus 로고    scopus 로고
    • PARAFAC2-Part 1: A direct fitting algorithm for the PARAFAC2 model
    • Kiers, H. A. L., ten Berge, J. M. F., and Bro, R. (1999). PARAFAC2-Part 1: A direct fitting algorithm for the PARAFAC2 model. Journal of Chemometrics 13, 275–294.
    • (1999) Journal of Chemometrics , vol.13 , pp. 275-294
    • Kiers, H.A.L.1    Ten Berge, J.M.F.2    Bro, R.3
  • 36
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38, 963–974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 37
    • 0009835762 scopus 로고    scopus 로고
    • Latent growth modeling of longitudinal data: A finite growth mixture modeling approach
    • Li, F., Duncan, T. E., Duncan, S. C., and Acock, A. (2001). Latent growth modeling of longitudinal data: A finite growth mixture modeling approach. Structural Equation Modeling 8, 493–530.
    • (2001) Structural Equation Modeling , vol.8 , pp. 493-530
    • Li, F.1    Duncan, T.E.2    Duncan, S.C.3    Acock, A.4
  • 38
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73, 13–22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.Y.1    Zeger, S.L.2
  • 39
    • 0001409017 scopus 로고
    • A class of logistic regression models for multivariate binary time series
    • Liang, K. Y. and Zeger, S. L. (1989). A class of logistic regression models for multivariate binary time series. Journal of the American Statistical Association 84, 447–451.
    • (1989) Journal of the American Statistical Association , vol.84 , pp. 447-451
    • Liang, K.Y.1    Zeger, S.L.2
  • 40
    • 33645077856 scopus 로고    scopus 로고
    • A mixed-effects regression model for longitudinal multivariate ordinal data
    • Liu, L. C. and Hedeker, D. (2006). A mixed-effects regression model for longitudinal multivariate ordinal data. Biometrics 62, 261–268.
    • (2006) Biometrics , vol.62 , pp. 261-268
    • Liu, L.C.1    Hedeker, D.2
  • 41
    • 77956887650 scopus 로고
    • A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects
    • Longford, N. T. (1987). A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects. Biometrika 74, 817–827.
    • (1987) Biometrika , vol.74 , pp. 817-827
    • Longford, N.T.1
  • 43
    • 0030757108 scopus 로고    scopus 로고
    • Mixed models for bivariate response repeated measures data using Gibbs sampling
    • Matsuyama, Y. and Ohashi, Y. (1997). Mixed models for bivariate response repeated measures data using Gibbs sampling. Statistics in Medicine 16, 1587–1601.
    • (1997) Statistics in Medicine , vol.16 , pp. 1587-1601
    • Matsuyama, Y.1    Ohashi, Y.2
  • 45
    • 0001568978 scopus 로고
    • Dynamic but structural equation modeling of repeated measures data
    • J. R. Nesselroade and R. B. Catell (eds.), Washington, DC: American Psychological Association
    • McArdle, J. J. (1988). Dynamic but structural equation modeling of repeated measures data. In J. R. Nesselroade and R. B. Catell (eds.), Handbook of Multivariate Experimental Psychology, pp. 561–614, Washington, DC: American Psychological Association.
    • (1988) Handbook of Multivariate Experimental Psychology , pp. 561-614
    • McArdle, J.J.1
  • 46
    • 34249962132 scopus 로고
    • Latent curve analysis
    • Meredith, W. and Tisak, J. (1990). Latent curve analysis. Psychometrika 55, 107–122.
    • (1990) Psychometrika , vol.55 , pp. 107-122
    • Meredith, W.1    Tisak, J.2
  • 47
    • 0000312259 scopus 로고
    • A dynamic factor model for the analysis of multivariate time series
    • Molenaar, P. C. M. (1985), A dynamic factor model for the analysis of multivariate time series. Psychometrika 50, 181–202.
    • (1985) Psychometrika , vol.50 , pp. 181-202
    • Molenaar, P.C.M.1
  • 49
    • 0025861467 scopus 로고
    • Modelling hearing thresholds in the elderly
    • Morrell, C. H. and Brant, L. J. (1991). Modelling hearing thresholds in the elderly. Statistics in Medicine 10, 1453–1464.
    • (1991) Statistics in Medicine , vol.10 , pp. 1453-1464
    • Morrell, C.H.1    Brant, L.J.2
  • 50
    • 0013297364 scopus 로고    scopus 로고
    • Beyond SEM: General latent variable modeling
    • Muthén, B. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika 29, 81–117.
    • (2002) Behaviormetrika , vol.29 , pp. 81-117
    • Muthén, B.1
  • 51
    • 0032969449 scopus 로고    scopus 로고
    • Finite mixture modeling with mixture outcomes using the EM-algorithm
    • Muthén, B. and Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM-algorithm. Biometrics 55, 463–469.
    • (1999) Biometrics , vol.55 , pp. 463-469
    • Muthén, B.1    Shedden, K.2
  • 52
    • 0033441152 scopus 로고    scopus 로고
    • Analysing developmental trajectories: Semi-parametric, group-based approach
    • Nagin, D. S. (1999). Analysing developmental trajectories: Semi-parametric, group-based approach. Psychological Methods 4, 139–177.
    • (1999) Psychological Methods , vol.4 , pp. 139-177
    • Nagin, D.S.1
  • 53
    • 21144468543 scopus 로고
    • Age, criminal careers, and population heterogeneity: Specification and estimation of a nonparametric, mixed Poisson model
    • Nagin, D. S. and Land, K. C. (1993). Age, criminal careers, and population heterogeneity: Specification and estimation of a nonparametric, mixed Poisson model. Criminology 31, 327–362.
    • (1993) Criminology , vol.31 , pp. 327-362
    • Nagin, D.S.1    Land, K.C.2
  • 54
    • 0035287985 scopus 로고    scopus 로고
    • Analyzing developmental trajectories of distinct but related behaviors: A group-based method
    • Nagin, D. S. and Tremblay, R. E. (2001). Analyzing developmental trajectories of distinct but related behaviors: A group-based method. Psychological Methods 6, 18–34.
    • (2001) Psychological Methods , vol.6 , pp. 18-34
    • Nagin, D.S.1    Tremblay, R.E.2
  • 55
    • 1342324954 scopus 로고    scopus 로고
    • Analysis of longitudinal multiple-source binary data using generalized estimating equations
    • O’Brien, L. M. and Fitzmaurice, G. M. (2004). Analysis of longitudinal multiple-source binary data using generalized estimating equations. Applied Statistics 53, 177–193.
    • (2004) Applied Statistics , vol.53 , pp. 177-193
    • O’Brien, L.M.1    Fitzmaurice, G.M.2
  • 56
    • 19944414320 scopus 로고    scopus 로고
    • Regression models for the analysis of longitudinal Gaussian data from multiple sources
    • O’Brien, L. M. and Fitzmaurice, G. M. (2005). Regression models for the analysis of longitudinal Gaussian data from multiple sources. Statistics in Medicine 24, 1725–1744.
    • (2005) Statistics in Medicine , vol.24 , pp. 1725-1744
    • O’Brien, L.M.1    Fitzmaurice, G.M.2
  • 60
    • 0024266392 scopus 로고
    • Correlated binary regression with covariates specific to each binary observation
    • Prentice, R. L. (1988). Correlated binary regression with covariates specific to each binary observation. Biometrics 44, 1033–1048.
    • (1988) Biometrics , vol.44 , pp. 1033-1048
    • Prentice, R.L.1
  • 61
    • 0005526227 scopus 로고    scopus 로고
    • Toward a coherent framework for comparing trajectories of individual change
    • L. M. Collins and A. G. Sayer (eds.), Washington, DC: American Psychological Association
    • Raudenbush, S. W. (2001). Toward a coherent framework for comparing trajectories of individual change. In L. M. Collins and A. G. Sayer (eds.), New Methods for the Analysis of Change, Chapter 2. Washington, DC: American Psychological Association.
    • (2001) New Methods for the Analysis of Change
    • Raudenbush, S.W.1
  • 62
    • 0032219076 scopus 로고    scopus 로고
    • Latent transition modeling of progression of healthrisk behavior
    • Reboussin, B. A. and Reboussin, D. M. (1998). Latent transition modeling of progression of healthrisk behavior. Multivariate Behavioral Research 33, 457–478.
    • (1998) Multivariate Behavioral Research , vol.33 , pp. 457-478
    • Reboussin, B.A.1    Reboussin, D.M.2
  • 63
    • 0000737837 scopus 로고
    • Multivariate repeated-measurement or growth curve models with multivariate random-effects covariance structure
    • Reinsel, G. (1982). Multivariate repeated-measurement or growth curve models with multivariate random-effects covariance structure. Journal of the American Statistical Association 77, 190–195.
    • (1982) Journal of the American Statistical Association , vol.77 , pp. 190-195
    • Reinsel, G.1
  • 64
    • 0000246137 scopus 로고
    • Estimation and prediction in a multivariate random effects generalized linear model
    • Reinsel, G. (1984). Estimation and prediction in a multivariate random effects generalized linear model. Journal of the American Statistical Association 79, 406–414.
    • (1984) Journal of the American Statistical Association , vol.79 , pp. 406-414
    • Reinsel, G.1
  • 65
    • 0036192328 scopus 로고    scopus 로고
    • The analysis of repeated multivariate binary quality of life data: A hierarchical model approach
    • Ribaudo, H. J. and Thompson, S. G. (2002). The analysis of repeated multivariate binary quality of life data: A hierarchical model approach. Statistical Methods in Medical Research 11, 69–83.
    • (2002) Statistical Methods in Medical Research , vol.11 , pp. 69-83
    • Ribaudo, H.J.1    Thompson, S.G.2
  • 66
    • 0029938348 scopus 로고    scopus 로고
    • Analyzing bivariate repeated measures for discrete and continuous outcome variables
    • Rochon, J. (1996). Analyzing bivariate repeated measures for discrete and continuous outcome variables. Biometrics 52, 740–750.
    • (1996) Biometrics , vol.52 , pp. 740-750
    • Rochon, J.1
  • 67
    • 0038134675 scopus 로고    scopus 로고
    • A structural equations modeling approach to the general linear mixed model
    • L. M. Collins and A. G. Sayer (eds.), Washington, DC: American Psychological Association
    • Rovine, M. J. and Molenaar, P. C. M. (2001). A structural equations modeling approach to the general linear mixed model. In L. M. Collins and A. G. Sayer (eds.), New Methods for the Analysis of Change, Chapter 3. Washington, DC: American Psychological Association.
    • (2001) New Methods for the Analysis of Change
    • Rovine, M.J.1    Molenaar, P.C.M.2
  • 68
    • 0033636129 scopus 로고    scopus 로고
    • Latent variable models for longitudinal data with multiple continuous outcomes
    • Roy, J. and Lin, X. (2000). Latent variable models for longitudinal data with multiple continuous outcomes. Biometrics 56, 1047–1054.
    • (2000) Biometrics , vol.56 , pp. 1047-1054
    • Roy, J.1    Lin, X.2
  • 69
    • 0037796957 scopus 로고    scopus 로고
    • Second-order latent growth models
    • L. M. Collins and A. G. Sayer (eds.), Washington, DC: American Psychological Association
    • Sayer, A. G. and Cumsille, P. E. (2001). Second-order latent growth models. In L. M. Collins and A. G. Sayer (eds.), New Methods for the Analysis of Change, Chapter 6. Washington, DC: American Psychological Association.
    • (2001) New Methods for the Analysis of Change
    • Sayer, A.G.1    Cumsille, P.E.2
  • 70
  • 72
    • 18444363865 scopus 로고    scopus 로고
    • Multiple indicator stationary time series models
    • Sivo, S. A. (2001). Multiple indicator stationary time series models. Structural Equation Modeling 8, 599–612.
    • (2001) Structural Equation Modeling , vol.8 , pp. 599-612
    • Sivo, S.A.1
  • 73
    • 21844522426 scopus 로고
    • Antisocial behavior, delinquent peer association and unsupervised wandering for boys: Growth and change from childhood to early adolescence
    • Stoolmiller, M. (1994). Antisocial behavior, delinquent peer association and unsupervised wandering for boys: Growth and change from childhood to early adolescence. Multivariate Behavioral Research 29, 263–288.
    • (1994) Multivariate Behavioral Research , vol.29 , pp. 263-288
    • Stoolmiller, M.1
  • 74
    • 0030909550 scopus 로고    scopus 로고
    • A stochastic model for the analysis of bivariate longitudinal AIDS data
    • Sy, J. P., Taylor, J. M. G., and Cumberland, W. G. (1997). A stochastic model for the analysis of bivariate longitudinal AIDS data. Biometrics 53, 542–555.
    • (1997) Biometrics , vol.53 , pp. 542-555
    • Sy, J.P.1    Taylor, J.M.G.2    Cumberland, W.G.3
  • 75
    • 0032929195 scopus 로고    scopus 로고
    • Mixed effects models with bivariate and univariate association parameters for longitudinal bivariate binary response data
    • Ten Have, T. R. and Morabia, A. (1999). Mixed effects models with bivariate and univariate association parameters for longitudinal bivariate binary response data. Biometrics 55, 85–93.
    • (1999) Biometrics , vol.55 , pp. 85-93
    • Ten Have, T.R.1    Morabia, A.2
  • 79
    • 0037795677 scopus 로고    scopus 로고
    • Four simultaneous component models for the analysis of multivariate time series from more than one subject to model intraindividual and interindividual differences
    • Timmerman, M. E. and Kiers, H. A. L. (2003). Four simultaneous component models for the analysis of multivariate time series from more than one subject to model intraindividual and interindividual differences. Psychometrika 1, 105–121.
    • (2003) Psychometrika , vol.1 , pp. 105-121
    • Timmerman, M.E.1    Kiers, H.A.L.2
  • 81
    • 0034377898 scopus 로고    scopus 로고
    • Spline smoothing for bivariate data with applications to association between hormones
    • Wang, Y., Guo, W., and Brown, M. B. (2000). Spline smoothing for bivariate data with applications to association between hormones. Statistica Sinica 10, 377–397.
    • (2000) Statistica Sinica , vol.10 , pp. 377-397
    • Wang, Y.1    Guo, W.2    Brown, M.B.3
  • 82
    • 1642406365 scopus 로고    scopus 로고
    • Using covariance structure analysis to model change over time
    • H. E. A. Tinsley and S. D. Brown (eds.), San Diego, CA: Academic Press
    • Willett, J. B. and Keiley, M. G. (2000). Using covariance structure analysis to model change over time. In H. E. A. Tinsley and S. D. Brown (eds.), Handbook of Applied Multivariate Statistics and Mathematical Modelling, Chapter 23, pp. 665–669, San Diego, CA: Academic Press.
    • (2000) Handbook of Applied Multivariate Statistics and Mathematical Modelling , vol.23 , pp. 665-669
    • Willett, J.B.1    Keiley, M.G.2
  • 83
    • 84892578673 scopus 로고    scopus 로고
    • Working Paper 2004–03, University of Waterloo Working Paper Series
    • Zeng, L. and Cook, R. J. (2004). Transition models for multivariate longitudinal binary data. Working Paper 2004–03, University of Waterloo Working Paper Series. http://www.stats.uwaterloo.ca/statsnavigation/techreports/04WorkingPapers/2004-03.pdf.
    • (2004) Transition Models for Multivariate Longitudinal Binary Data
    • Zeng, L.1    Cook, R.J.2
  • 84
    • 12244310929 scopus 로고
    • Correlated binary regression using a quadratic exponential model
    • Zhao, L. P. and Prentice, R. L. (1990). Correlated binary regression using a quadratic exponential model. Biometrika 77, 642–648.
    • (1990) Biometrika , vol.77 , pp. 642-648
    • Zhao, L.P.1    Prentice, R.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.