-
1
-
-
84863281534
-
Genome-wide dna methylation indicates silencing of tumor suppressor genes in uterine leiomyoma
-
A. Navarro, P. Yin, D. Monsivais, S. M. Lin, P. Du, J. J. Wei, S. E. Bulun, Genome-Wide DNA Methylation Indicates Silencing of Tumor Suppressor Genes in Uterine Leiomyoma, PLoS One, vol. 7, no. 3, pp. e33284, 2012.
-
(2012)
PLoS One
, vol.7
, Issue.3
-
-
Navarro, A.1
Yin, P.2
Monsivais, D.3
Lin, S.M.4
Du, P.5
Wei, J.J.6
Bulun, S.E.7
-
2
-
-
65249115735
-
RankAggreg, an r package for weighted rank aggregation
-
V. Pihur, S. Datta and S. Datta, RankAggreg, an R Package for Weighted Rank Aggregation, BMC Bioinformatics, vol. 10, pp. 62-72, 2009.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 62-72
-
-
Pihur, V.1
Datta, S.2
Datta, S.3
-
3
-
-
33645643565
-
A two-sample bayesian t-test for microarray data
-
R.J.Fox, M. W. Dimmic, A Two-Sample Bayesian t-test for Microarray Data, BMC Bioinformatics, vol. 7, no. 126, pp. 1-11, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.126
, pp. 1-11
-
-
Fox, R.J.1
Dimmic, M.W.2
-
4
-
-
28844453286
-
Parametric versus non-parametric statistics in the analysis of randomized trials with non-normally distributed data
-
A. Vickers, Parametric Versus Non-Parametric Statistics in the Analysis of Randomized Trials with Non-Normally Distributed Data, BMC Medical Research Methodology, vol. 5, no. 35, 2005.
-
(2005)
BMC Medical Research Methodology
, vol.5
, Issue.35
-
-
Vickers, A.1
-
5
-
-
78650017227
-
On biclustering of gene expression data
-
A. Mukhopadhyay, U. Maulik, and S. Bandyopdhyay, On Biclustering of Gene Expression Data, Current Bioinformatics, vol. 5, no. 3, pp. 204216, 2010.
-
(2010)
Current Bioinformatics
, vol.5
, Issue.3
, pp. 204216
-
-
Mukhopadhyay, A.1
Maulik, U.2
Bandyopdhyay, S.3
-
6
-
-
84859945790
-
A novel biclustering approach to association rule mining for predicting hiv-lhuman protein interactions
-
A. Mukhopadhyay, U. Maulik, and S. Bandyopdhyay, A Novel Biclustering Approach to Association Rule Mining for Predicting HIV-lHuman Protein Interactions, PLoS One, vol. 7, no. 4, pp. e32289, 2012.
-
(2012)
PLoS One
, vol.7
, Issue.4
-
-
Mukhopadhyay, A.1
Maulik, U.2
Bandyopdhyay, S.3
-
7
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
R. Agrawal, T. Imielinski and A. Swami, Mining Association Rules between Sets of Items in large Databases, In: Proceedings of the 1993 ACM SIGMOD international conference on Management of data (SIGMOD93), New York, NY, USA: ACM, pp. 207-216, 1993.
-
(1993)
Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data (SIGMOD93), New York, NY, USA: ACM
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.3
-
8
-
-
79955700192
-
Mining association rules from hiv-human protein interactions
-
A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay and R. Eils, Mining Association Rules from HIV-human Protein Interactions, Int Conf. Systems in Medicine and Biology (ICSMB), pp. 344-348, 2010.
-
(2010)
Int Conf. Systems in Medicine and Biology (ICSMB)
, pp. 344-348
-
-
Mukhopadhyay, A.1
Maulik, U.2
Bandyopadhyay, S.3
Eils, R.4
-
9
-
-
0042354626
-
Strategy for elucidating differentially expressed genes in leiomyomata identified by microarray technology
-
W.H.Catherino, C. Prupas, J. C.Tsibris, P. C.Leppert and M.Payson, Strategy for Elucidating Differentially Expressed Genes in Leiomyomata Identified by Microarray Technology, Fertil Steril, vol. 80, pp. 282-290, 2003.
-
(2003)
Fertil Steril
, vol.80
, pp. 282-290
-
-
Catherino, W.H.1
Prupas, C.2
Tsibris, J.C.3
Leppert, P.C.4
Payson, M.5
-
10
-
-
4544341015
-
Linear models and empirical bayes methods for assessing differential expression in microarray experiments
-
G. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Statistical Applications in Genetics and Molecular Biology, vol. 3, no. 1, pp. 3, 2004.
-
(2004)
Statistical Applications in Genetics and Molecular Biology
, vol.3
, Issue.1
, pp. 3
-
-
Smyth, G.1
-
11
-
-
85056053539
-
Association rule based similarity measures for the clustering of gene expression data
-
P. Sethi and S. Alagiriswamy, Association Rule Based Similarity Measures for the Clustering of Gene Expression Data, The Open Medical Informatics Journal, vol. 4, pp. 63-73, 2010.
-
(2010)
The Open Medical Informatics Journal
, vol.4
, pp. 63-73
-
-
Sethi, P.1
Alagiriswamy, S.2
-
12
-
-
33644656960
-
Integrated analysis of gene expression by association rules discovery
-
P. Carmona-Saez, M. Chagoyen, A. Rodriguez, O. Trelles, J. M. Carazo and A. Pascual-Montano, Integrated Analysis of Gene Expression by Association Rules Discovery, BMC Bioinformatics, vol. 7, no. 54, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.54
-
-
Carmona-Saez, P.1
Chagoyen, M.2
Rodriguez, A.3
Trelles, O.4
Carazo, J.M.5
Pascual-Montano, A.6
-
13
-
-
84879271402
-
Analysis of various interestingness measures in class association rule mining
-
X. Li, S. Mabu, H. Zhou, K. Shimada and K. Hirasawa, Analysis of Various Interestingness Measures in Class Association Rule Mining, SICE Journal of Control, Measurement, and System Integration, vol. 4, no. 4, pp. 295-304, 2011.
-
(2011)
SICE Journal of Control, Measurement, and System Integration
, vol.4
, Issue.4
, pp. 295-304
-
-
Li, X.1
Mabu, S.2
Zhou, H.3
Shimada, K.4
Hirasawa, K.5
-
14
-
-
0037245822
-
Mining gene expression databases for association rules
-
C. Creighton, and S. Hanash, Mining Gene Expression Databases for Association Rules, Bioinformatics, vol. 19, no. 1, pp. 79-86, 2003.
-
(2003)
Bioinformatics
, vol.19
, Issue.1
, pp. 79-86
-
-
Creighton, C.1
Hanash, S.2
-
16
-
-
84886368789
-
Interestingness measure for mining spatial gene expression data using association rule
-
M. Anandhavalli, M. K. Ghose, and K. Gauthaman, Interestingness Measure for Mining Spatial Gene Expression Data using Association Rule, Journal of Computing, vol. 2, no. 1, pp. 110-114, 2010.
-
(2010)
Journal of Computing
, vol.2
, Issue.1
, pp. 110-114
-
-
Anandhavalli, M.1
Ghose, M.K.2
Gauthaman, K.3
-
17
-
-
0036376993
-
Statistical methods for identifying differentially expressed genes in replicated cdna microarray experiments
-
S. Dudoit, Y. Yang, T. Speed, and M. Callow, Statistical Methods for Identifying Differentially Expressed Genes in Replicated cDNA Microarray Experiments, Statistica Sinica, vol. 12, pp. 111-139, 2002.
-
(2002)
Statistica Sinica
, vol.12
, pp. 111-139
-
-
Dudoit, S.1
Yang, Y.2
Speed, T.3
Callow, M.4
-
18
-
-
32544432046
-
Comparison of various statistical methods for identifying differential gene expression in replicated microarray data
-
S. Y. Kim, J. W. Lee, and I. S. Sohn, Comparison of Various Statistical Methods for Identifying Differential Gene Expression in Replicated Microarray Data, Statistical Methods in Medical Research, vol. 15, pp. 3-20, 2006.
-
(2006)
Statistical Methods in Medical Research
, vol.15
, pp. 3-20
-
-
Kim, S.Y.1
Lee, J.W.2
Sohn, I.S.3
-
19
-
-
14244263713
-
Gene expression profiling of leiomyoma and myometrial smooth muscle cells in response to transforming growth factor
-
March
-
X. Luo, L. Ding, J. Xu and N. Chegini, Gene Expression Profiling of Leiomyoma and Myometrial Smooth Muscle Cells in Response to Transforming Growth Factor-, Endocrinology, vol. 146, no. 3, pp. 10971118, March 2005.
-
(2005)
Endocrinology
, vol.146
, Issue.3
, pp. 10971118
-
-
Luo, X.1
Ding, L.2
Xu, J.3
Chegini, N.4
-
20
-
-
21444454257
-
False discovery rate sensitivity and sample size for microarray studies
-
Y. Pawitan, S. Michiels, S. Koscielny, A. Gusnanto, and A. Ploner, False Discovery Rate, Sensitivity and Sample Size for Microarray Studies, Bioinformatics, vol. 21, pp. 3017-3024, 2005.
-
(2005)
Bioinformatics
, vol.21
, pp. 3017-3024
-
-
Pawitan, Y.1
Michiels, S.2
Koscielny, S.3
Gusnanto, A.4
Ploner, A.5
-
21
-
-
0002437730
-
A test for normality of observations and regression residuals
-
CM. Jarque and A.K. Bera, A test for normality of observations and regression residuals, International Statistical Review, vol. 55, no. 2, pp. 163-172, 1987.
-
(1987)
International Statistical Review
, vol.55
, Issue.2
, pp. 163-172
-
-
Jarque, C.M.1
Bera, A.K.2
-
22
-
-
79960857685
-
Building interpretable fuzzy models for high dimentional data analysis in cancer diagnosis
-
Z. Wang and V. Palade, Building Interpretable Fuzzy Models for High Dimentional Data Analysis in Cancer Diagnosis,BMC Genomics,no. 12(S2):S5, 2011.
-
(2011)
BMC Genomics 12
, vol.S2
-
-
Wang, Z.1
Palade, V.2
-
24
-
-
78649720287
-
Multi-class clustering of cancer subtypes through svm based ensemble ofpareto-optimal solutions for gene marker identification
-
A. Mukhopadhyay, S. Bandyopadhyay and U. Maulik, Multi-Class Clustering of Cancer Subtypes through SVM Based Ensemble ofPareto-Optimal Solutions for Gene Marker Identification, PLoS One, vol. 5, no. 11, pp. el3803, 2010.
-
(2010)
PLoS One
, vol.5
, Issue.11
-
-
Mukhopadhyay, A.1
Bandyopadhyay, S.2
Maulik, U.3
-
25
-
-
80755159321
-
Uterine and ovarian carcinosarcomas overexpressing Trop-2 are sensitive to hRS7, a humanized anti-Trop-2 antibody
-
R. Raji, F. Guzzo, L. Carrara, J. Varughese, E. Cocco, S. Bellone, M. Betti, P. Todeschini, S. Gasparrini, E. Ratner, D.A. Silasi, M. Azodi, P. Schwartz, T.J. Rutherford, N. Buza, S. Pecorelli and A.D. Santin, Uterine and ovarian carcinosarcomas overexpressing Trop-2 are sensitive to hRS7, a humanized anti-Trop-2 antibody, Journal of Experimental & Clinical Cancer Research, vol. 30, no. 106, 2011.
-
(2011)
Journal of Experimental & Clinical Cancer Research
, vol.30
, Issue.106
-
-
Raji, R.1
Guzzo, F.2
Carrara, L.3
Varughese, J.4
Cocco, E.5
Bellone, S.6
Betti, M.7
Todeschini, P.8
Gasparrini, S.9
Ratner, E.10
Silasi, D.A.11
Azodi, M.12
Schwartz, P.13
Rutherford, T.J.14
Buza, N.15
Pecorelli, S.16
Santin, A.D.17
|