-
1
-
-
53349151865
-
The basic reproduction number in some discrete-time epidemic models
-
Allen, L. J. S., & van den Driessche, P. (2008). The basic reproduction number in some discrete-time epidemic models. J. Differ. Equ. Appl., 14(10-11), 1127-1147.
-
(2008)
J. Differ. Equ. Appl.
, vol.14
, Issue.10-11
, pp. 1127-1147
-
-
Allen, L.J.S.1
van den Driessche, P.2
-
2
-
-
58849120212
-
Age-of-infection and the final size relation
-
Brauer, F. (2008). Age-of-infection and the final size relation. Math. Biosci. Eng., 5(4), 681-690.
-
(2008)
Math. Biosci. Eng.
, vol.5
, Issue.4
, pp. 681-690
-
-
Brauer, F.1
-
4
-
-
77149155137
-
Discrete epidemic models
-
Brauer, F., Feng, Z., & Castillo-Chavez, C. (2010). Discrete epidemic models. Math. Biosci., 7, 1-15.
-
(2010)
Math. Biosci.
, vol.7
, pp. 1-15
-
-
Brauer, F.1
Feng, Z.2
Castillo-Chavez, C.3
-
7
-
-
3042696403
-
Model parameters and outbreak control for SARS
-
Chowell, G., Castillo-Chavez, C., Fenimore, P. W., Kribs-Zaleta, C. M., Arriola, L., & Hyman, J. M. (2004). Model parameters and outbreak control for SARS. Emerg. Infect. Dis., 10(7), 1258-1263.
-
(2004)
Emerg. Infect. Dis.
, vol.10
, Issue.7
, pp. 1258-1263
-
-
Chowell, G.1
Castillo-Chavez, C.2
Fenimore, P.W.3
Kribs-Zaleta, C.M.4
Arriola, L.5
Hyman, J.M.6
-
8
-
-
0042168643
-
SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism
-
Chowell, G., Fenimore, P. W., Castillo-Garsow, M. A., & Castillo-Chavez, C. (2003). SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism. J. Theor. Biol., 224(1), 1-8.
-
(2003)
J. Theor. Biol.
, vol.224
, Issue.1
, pp. 1-8
-
-
Chowell, G.1
Fenimore, P.W.2
Castillo-Garsow, M.A.3
Castillo-Chavez, C.4
-
10
-
-
0036847088
-
Daniel Bernoulli's epidemiological model revisited
-
Dietz, K., & Heesterbeek, J. (2002). Daniel Bernoulli's epidemiological model revisited. Math. Biosci., 180, 1-21.
-
(2002)
Math. Biosci.
, vol.180
, pp. 1-21
-
-
Dietz, K.1
Heesterbeek, J.2
-
11
-
-
34250697942
-
Epidemiological models with non-exponentially distributed disease stages and applications to disease control
-
Feng, Z., Xu, D., & Zhao, H. (2007). Epidemiological models with non-exponentially distributed disease stages and applications to disease control. Bull. Math. Biol., 69, 1511-1536.
-
(2007)
Bull. Math. Biol.
, vol.69
, pp. 1511-1536
-
-
Feng, Z.1
Xu, D.2
Zhao, H.3
-
12
-
-
16644369677
-
Modeling strategies for controlling SARS outbreaks based on Toronto, Hong Kong, Singapore and Beijing experience
-
Gumel, A., Ruan, S., Day, T., Watmough, J., van den Driessche, P., Brauer, F., Gabrielson, D., Bowman, C., Alexander, M., Ardal, S., Wu, J., & Sahai, B. (2004). Modeling strategies for controlling SARS outbreaks based on Toronto, Hong Kong, Singapore and Beijing experience. Proc. R. Soc. Lond., 271, 2223-2232.
-
(2004)
Proc. R. Soc. Lond.
, vol.271
, pp. 2223-2232
-
-
Gumel, A.1
Ruan, S.2
Day, T.3
Watmough, J.4
van den Driessche, P.5
Brauer, F.6
Gabrielson, D.7
Bowman, C.8
Alexander, M.9
Ardal, S.10
Wu, J.11
Sahai, B.12
-
13
-
-
0000998185
-
Contributions to the mathematical theory of epidemics. I
-
Reprinted in Bull. Math. Biol. 53, 33-55 (1991)
-
Kermack, W. O., & McKendrick, A. G. (1927). Contributions to the mathematical theory of epidemics. I. Proc. R. Soc. Lond. Ser. A, 115, 700-721. Reprinted in Bull. Math. Biol. 53, 33-55 (1991).
-
(1927)
Proc. R. Soc. Lond. Ser. A
, vol.115
, pp. 700-721
-
-
Kermack, W.O.1
McKendrick, A.G.2
-
14
-
-
0002379564
-
Contributions to the mathematical theory of epidemics. II. The problem of endemicity
-
Kermack, W. O., & McKendrick, A. G. (1932). Contributions to the mathematical theory of epidemics. II. The problem of endemicity. Proc. R. Soc. Lond. Ser. A, 138(834), 55-83.
-
(1932)
Proc. R. Soc. Lond. Ser. A
, vol.138
, Issue.834
, pp. 55-83
-
-
Kermack, W.O.1
McKendrick, A.G.2
-
15
-
-
0002303718
-
Contributions to the mathematical theory of epidemics. III. Further studies of the problem of endemicity
-
Reprinted in Bull. Math. Biol. 53, 89-118 (1991)
-
Kermack, W. O., & McKendrick, A. G. (1933). Contributions to the mathematical theory of epidemics. III. Further studies of the problem of endemicity. Proc. R. Soc. Lond. Ser. A, 141(843), 94-122. Reprinted in Bull. Math. Biol. 53, 89-118 (1991).
-
(1933)
Proc. R. Soc. Lond. Ser. A
, vol.141
, Issue.843
, pp. 94-122
-
-
Kermack, W.O.1
McKendrick, A.G.2
-
16
-
-
0016636706
-
Final size distribution for epidemics
-
Ludwig, D. (1975). Final size distribution for epidemics. Math. Biosci., 23(1), 33-46.
-
(1975)
Math. Biosci.
, vol.23
, Issue.1
, pp. 33-46
-
-
Ludwig, D.1
-
17
-
-
33746581986
-
Generality of the final size formula for an epidemic of a newly invading infectious disease
-
Ma, J., & Earn, D. J. (2006). Generality of the final size formula for an epidemic of a newly invading infectious disease. Bull. Math. Biol., 68(3), 679-702.
-
(2006)
Bull. Math. Biol.
, vol.68
, Issue.3
, pp. 679-702
-
-
Ma, J.1
Earn, D.J.2
-
18
-
-
54249124424
-
The relationship between real-time and discrete-generation models of epidemic spread
-
Pellis, L., Ferguson, N. M., & Fraser, C. F. (2008). The relationship between real-time and discrete-generation models of epidemic spread. Math. Biosci., 216(1), 63-70.
-
(2008)
Math. Biosci.
, vol.216
, Issue.1
, pp. 63-70
-
-
Pellis, L.1
Ferguson, N.M.2
Fraser, C.F.3
|