메뉴 건너뛰기




Volumn 41, Issue 4, 2013, Pages 1780-1815

Optimal detection of sparse principal components in high dimension

Author keywords

High dimensional detection; Minimax lower bounds; Planted clique; Semidefinite relaxation; Sparse principal component analysis; Spiked covariance model

Indexed keywords


EID: 84885061765     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/13-AOS1127     Document Type: Article
Times cited : (255)

References (74)
  • 6
    • 80052581489 scopus 로고    scopus 로고
    • Nuclear norm minimization for the planted clique and biclique problems
    • AMES, B. P. W. and VAVASIS, S. A. (2011). Nuclear norm minimization for the planted clique and biclique problems. Math. Program. 129 69-89.
    • (2011) Math. Program. , vol.129 , pp. 69-89
    • Ames, B.P.W.1    Vavasis, S.A.2
  • 7
    • 69049101180 scopus 로고    scopus 로고
    • High-dimensional analysis of semidefinite relaxations for sparse principal components
    • AMINI, A. A. and WAINWRIGHT, M. J. (2009). High-dimensional analysis of semidefinite relaxations for sparse principal components. Ann. Statist. 37 2877-2921.
    • (2009) Ann. Statist. , vol.37 , pp. 2877-2921
    • Amini, A.A.1    Wainwright, M.J.2
  • 9
    • 79551611884 scopus 로고    scopus 로고
    • Detection of an anomalous cluster in a network
    • ARIAS-CASTRO, E., CANDÈS, E. J. and DURAND, A. (2011). Detection of an anomalous cluster in a network. Ann. Statist. 39 278-304.
    • (2011) Ann. Statist. , vol.39 , pp. 278-304
    • Arias-Castro, E.1    Candès, E.J.2    Durand, A.3
  • 10
    • 82655189988 scopus 로고    scopus 로고
    • Global testing under sparse alternatives: ANOVA, multiple comparisons and the higher criticism
    • ARIAS-CASTRO, E., CANDÈS, E. J. and PLAN, Y. (2011). Global testing under sparse alternatives: ANOVA, multiple comparisons and the higher criticism. Ann. Statist. 39 2533-2556.
    • (2011) Ann. Statist. , vol.39 , pp. 2533-2556
    • Arias-Castro, E.1    Candès, E.J.2    Plan, Y.3
  • 12
    • 0347989448 scopus 로고    scopus 로고
    • Methodologies in spectral analysis of large-dimensional random matrices, a review
    • BAI, Z. D. (1999). Methodologies in spectral analysis of large-dimensional random matrices, a review. Statist. Sinica 9 611-677.
    • (1999) Statist. Sinica , vol.9 , pp. 611-677
    • Bai, Z.D.1
  • 13
    • 27644476898 scopus 로고    scopus 로고
    • Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices
    • DOI 10.1214/009117905000000233
    • BAIK, J., BEN AROUS, G. and PECHE, S. (2005). Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33 1643-1697. (Pubitemid 41560766)
    • (2005) Annals of Probability , vol.33 , Issue.5 , pp. 1643-1697
    • Baik, J.1    Arous, G.B.2    Peche, S.3
  • 14
    • 33646507506 scopus 로고    scopus 로고
    • Eigenvalues of large sample covariance matrices of spiked population models
    • DOI 10.1016/j.jmva.2005.08.003, PII S0047259X0500134X
    • BAIK, J. and SILVERSTEIN, J. W. (2006). Eigenvalues of large sample covariance matrices of spiked population models. J. Multivariate Anal. 97 1382-1408. (Pubitemid 43705671)
    • (2006) Journal of Multivariate Analysis , vol.97 , Issue.6 , pp. 1382-1408
    • Baik, J.1    Silverstein, J.W.2
  • 16
    • 24344470806 scopus 로고    scopus 로고
    • Non-asymptotic minimax rates of testing in signal detection
    • BARAUD, Y. (2002). Non-asymptotic minimax rates of testing in signal detection. Bernoulli 8 577-606. (Pubitemid 44242664)
    • (2002) Bernoulli , vol.8 , Issue.5 , pp. 577-606
    • Baraud, Y.1
  • 17
    • 62349112885 scopus 로고    scopus 로고
    • Covariance regularization by thresholding
    • BICKEL, P. J. and LEVINA, E. (2008). Covariance regularization by thresholding. Ann. Statist. 36 2577-2604.
    • (2008) Ann. Statist. , vol.36 , pp. 2577-2604
    • Bickel, P.J.1    Levina, E.2
  • 18
    • 84879351019 scopus 로고    scopus 로고
    • Minimax bounds for sparse PCA with noisy high-dimensional data
    • BIRNBAUM, A., and JOHNSTONE., I. M., NADLER, B. and PAUL, D. (2013). Minimax bounds for sparse PCA with noisy high-dimensional data. Ann. Statist. 41 1055-1084.
    • (2013) Ann. Statist. , vol.41 , pp. 1055-1084
    • Birnbaum, A.1    Johnstone, I.M.2    Nadler, B.3    Paul, D.4
  • 23
    • 77955132618 scopus 로고    scopus 로고
    • Optimal rates of convergence for covariance matrix estimation
    • CAI, T. T., ZHANG, C.-H. and ZHOU, H. H. (2010). Optimal rates of convergence for covariance matrix estimation. Ann. Statist. 38 2118-2144.
    • (2010) Ann. Statist. , vol.38 , pp. 2118-2144
    • Cai, T.T.1    Zhang, C.-H.2    Zhou, H.H.3
  • 24
    • 84875499797 scopus 로고    scopus 로고
    • Computational and statistical tradeoffs via convex relaxation
    • CHANDRASEKARAN, V. and JORDAN, M. I. (2013). Computational and statistical tradeoffs via convex relaxation. Proc. Natl. Acad. Sci. 110 E1181-E1190.
    • (2013) Proc. Natl. Acad. Sci. , vol.110
    • Chandrasekaran, V.1    Jordan, M.I.2
  • 25
    • 80455132482 scopus 로고    scopus 로고
    • Adaptive elastic-net sparse principal component analysis for pathway association testing
    • Art. 48, 23
    • CHEN, X. (2011). Adaptive elastic-net sparse principal component analysis for pathway association testing. Stat. Appl. Genet. Mol. Biol. 10 Art. 48, 23.
    • (2011) Stat. Appl. Genet. Mol. Biol. , vol.10
    • Chen, X.1
  • 26
    • 48849086355 scopus 로고    scopus 로고
    • Optimal solutions for sparse principal component analysis
    • D'ASPREMONT, A., BACH, F. and EL GHAOUI, L. (2008). Optimal solutions for sparse principal component analysis. J. Mach. Learn. Res. 9 1269-1294.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1269-1294
    • D'Aspremont, A.1    Bach, F.2    El Ghaoui, L.3
  • 28
    • 34548514458 scopus 로고    scopus 로고
    • A direct formulation for sparse PCA using semidefinite programming
    • DOI 10.1137/050645506
    • D'ASPREMONT, A., EL GHAOUI, L., JORDAN, M. I. and LANCKRIET, G. R. G. (2007). A direct formulation for sparse PCA using semidefinite programming. SIAM Rev. 49 434-448 (electronic). (Pubitemid 47377693)
    • (2007) SIAM Review , vol.49 , Issue.3 , pp. 434-448
    • D'Aspremont, A.1    El Ghaoui, L.2    Jordan, M.I.3    Lanckriet, G.R.G.4
  • 30
    • 23744475601 scopus 로고    scopus 로고
    • Higher criticism for detecting sparse heterogeneous mixtures
    • DOI 10.1214/009053604000000265
    • DONOHO, D. and JIN, J. (2004). Higher criticism for detecting sparse heterogeneous mixtures. Ann. Statist. 32 962-994. (Pubitemid 41250290)
    • (2004) Annals of Statistics , vol.32 , Issue.3 , pp. 962-994
    • Donoho, D.1    Jin, J.2
  • 31
    • 62349123505 scopus 로고    scopus 로고
    • Operator norm consistent estimation of large-dimensional sparse covariance matrices
    • EL KAROUI, N. (2008). Operator norm consistent estimation of large-dimensional sparse covariance matrices. Ann. Statist. 36 2717-2756.
    • (2008) Ann. Statist. , vol.36 , pp. 2717-2756
    • El Karoui, N.1
  • 32
    • 0034406149 scopus 로고    scopus 로고
    • Finding and certifying a large hidden clique in a Semirandom graph
    • FEIGE, U. and KRAUTHGAMER, R. (2000). Finding and certifying a large hidden clique in a semirandom graph. Random Structures Algorithms 16 195-208.
    • (2000) Random Structures Algorithms , vol.16 , pp. 195-208
    • Feige, U.1    Krauthgamer, R.2
  • 33
    • 0038285474 scopus 로고    scopus 로고
    • The probable value of the lovász-schrijver relaxations for maximum independent set
    • (electronic)
    • FEIGE, U. and KRAUTHGAMER, R. (2003). The probable value of the Lovász-Schrijver relaxations for maximum independent set. SIAM J. Comput. 32 345-370 (electronic).
    • (2003) SIAM J. Comput. , vol.32 , pp. 345-370
    • Feige, U.1    Krauthgamer, R.2
  • 36
    • 68749084936 scopus 로고    scopus 로고
    • The largest eigenvalues of sample covariance matrices for a spiked population: Diagonal case
    • 33
    • FÉRAL, D. and PECHE, S. (2009). The largest eigenvalues of sample covariance matrices for a spiked population: Diagonal case. J. Math. Phys. 50 073302, 33.
    • (2009) J. Math. Phys. , vol.50 , pp. 073302
    • Féral, D.1    Peche, S.2
  • 38
    • 0001436319 scopus 로고
    • A limit theorem for the norm of random matrices
    • GEMAN, S. (1980). A limit theorem for the norm of random matrices. Ann. Probab. 8 252-261.
    • (1980) Ann. Probab. , vol.8 , pp. 252-261
    • Geman, S.1
  • 39
    • 84893574327 scopus 로고
    • Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
    • GOEMANS, M. X. and WILLIAMSON, D. P. (1995). Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42 1115-1145.
    • (1995) J. Assoc. Comput. Mach. , vol.42 , pp. 1115-1145
    • Goemans, M.X.1    Williamson, D.P.2
  • 40
    • 79952972547 scopus 로고    scopus 로고
    • How hard is it to approximate the best nash equilibrium?
    • HAZAN, E. and KRAUTHGAMER, R. (2011). How hard is it to approximate the best Nash equilibrium? SIAM J. Comput. 40 79-91.
    • (2011) SIAM J. Comput. , vol.40 , pp. 79-91
    • Hazan, E.1    Krauthgamer, R.2
  • 41
    • 84885062574 scopus 로고
    • The asymptotic efficiency of tests for a simple hypothesis against a composite alternative
    • INGSTER, Y. I. (1982). The asymptotic efficiency of tests for a simple hypothesis against a composite alternative. Teor. Veroyatn. Primen. 27 587-592.
    • (1982) Teor. Veroyatn. Primen. , vol.27 , pp. 587-592
    • Ingster, Y.I.1
  • 44
    • 84990700795 scopus 로고
    • Large cliques elude the metropolis process
    • JERRUM, M. (1992). Large cliques elude the Metropolis process. Random Structures Algorithms 3 347-359.
    • (1992) Random Structures Algorithms , vol.3 , pp. 347-359
    • Jerrum, M.1
  • 45
    • 0035641726 scopus 로고    scopus 로고
    • On the distribution of the largest eigenvalue in principal components analysis
    • JOHNSTONE, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 295-327.
    • (2001) Ann. Statist. , vol.29 , pp. 295-327
    • Johnstone, I.M.1
  • 46
    • 66549088006 scopus 로고    scopus 로고
    • On consistency and sparsity for principal components analysis in high dimensions
    • JOHNSTONE, I. M. and LU, A. Y. (2009). On consistency and sparsity for principal components analysis in high dimensions. J. Amer. Statist. Assoc. 104 682-693.
    • (2009) J. Amer. Statist. Assoc. , vol.104 , pp. 682-693
    • Johnstone, I.M.1    Lu, A.Y.2
  • 48
    • 0038501444 scopus 로고    scopus 로고
    • Hiding cliques for cryptographic security
    • JUELS, A. and PEINADO, M. (2000). Hiding cliques for cryptographic security. Des. Codes Cryptogr. 20 269-280.
    • (2000) Des. Codes Cryptogr. , vol.20 , pp. 269-280
    • Juels, A.1    Peinado, M.2
  • 49
    • 0003037529 scopus 로고
    • Reducibility among combinatorial problems
    • (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972) Plenum, New York
    • KARP, R. M. (1972). Reducibility among combinatorial problems. In Complexity of Computer Computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972) 85-103. Plenum, New York.
    • (1972) Complexity of Computer Computations , pp. 85-103
    • Karp, R.M.1
  • 51
    • 0036604770 scopus 로고    scopus 로고
    • Approximating the independence number and the chromatic number in expected polynomial time
    • DOI 10.1023/A:1013899527204
    • KRIVELEVICH, M. and VU, V. H. (2002). Approximating the independence number and the chromatic number in expected polynomial time. J. Comb. Optim. 6 143-155. (Pubitemid 34176300)
    • (2002) Journal of Combinatorial Optimization , vol.6 , Issue.2 , pp. 143-155
    • Krivelevich, M.1    Vu, V.H.2
  • 52
    • 0003156650 scopus 로고
    • Expected complexity of graph partitioning problems
    • KUČERA, L. (1995). Expected complexity of graph partitioning problems. Discrete Appl. Math. 57 193-212.
    • (1995) Discrete Appl. Math. , vol.57 , pp. 193-212
    • Kučera, L.1
  • 53
    • 0034287154 scopus 로고    scopus 로고
    • Adaptive estimation of a quadratic functional by model selection
    • DOI 10.1214/aos/1015957395
    • LAURENT, B. and MASSART, P. (2000). Adaptive estimation of a quadratic functional by model selection. Ann. Statist. 28 1302-1338. (Pubitemid 33244915)
    • (2000) Annals of Statistics , vol.28 , Issue.5 , pp. 1302-1338
    • Laurent, B.1    Massart, P.2
  • 54
    • 84872078104 scopus 로고    scopus 로고
    • High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity
    • LOH, P.-L. and WAINWRIGHT, M. J. (2012). High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity. Ann. Statist. 40 1637-1664.
    • (2012) Ann. Statist. , vol.40 , pp. 1637-1664
    • Loh, P.-L.1    Wainwright, M.J.2
  • 55
    • 84866263494 scopus 로고    scopus 로고
    • An augmented lagrangian approach for sparse principal component analysis
    • LU, Z. and ZHANG, Y. (2012). An augmented Lagrangian approach for sparse principal component analysis. Math. Program. 135 149-193.
    • (2012) Math. Program. , vol.135 , pp. 149-193
    • Lu, Z.1    Zhang, Y.2
  • 57
    • 84877623616 scopus 로고    scopus 로고
    • Sparse principal component analysis and iterative thresholding
    • MA, Z. (2013). Sparse principal component analysis and iterative thresholding. Ann. Statist. 41 772-801.
    • (2013) Ann. Statist. , vol.41 , pp. 772-801
    • Ma, Z.1
  • 58
    • 62349121558 scopus 로고    scopus 로고
    • Finite sample approximation results for principal component analysis: A matrix perturbation approach
    • NADLER, B. (2008). Finite sample approximation results for principal component analysis: A matrix perturbation approach. Ann. Statist. 36 2791-2817.
    • (2008) Ann. Statist. , vol.36 , pp. 2791-2817
    • Nadler, B.1
  • 61
    • 84879400429 scopus 로고    scopus 로고
    • Asymptotic power of sphericity tests for high-dimensional data
    • ONATSKI, A., MOREIRA, M. J. and HALLIN, M. (2013). Asymptotic power of sphericity tests for high-dimensional data. Ann. Statist. 41 1204-1231.
    • (2013) Ann. Statist. , vol.41 , pp. 1204-1231
    • Onatski, A.1    Moreira, M.J.2    Hallin, M.3
  • 62
    • 38549175880 scopus 로고    scopus 로고
    • Asymptotics of sample eigenstructure for a large dimensional spiked covariance model
    • PAUL, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statist. Sinica 17 1617-1642.
    • (2007) Statist. Sinica , vol.17 , pp. 1617-1642
    • Paul, D.1
  • 65
    • 84869784137 scopus 로고    scopus 로고
    • Consistency of sparse PCA in high dimension, low sample size contexts
    • SHEN, D., SHEN, H. and MARRON, J. S. (2013). Consistency of sparse PCA in high dimension, low sample size contexts. J. Multivariate Anal. 115 317-333.
    • (2013) J. Multivariate Anal. , vol.115 , pp. 317-333
    • Shen, D.1    Shen, H.2    Marron, J.S.3
  • 67
    • 57249084588 scopus 로고    scopus 로고
    • On the size and recovery of submatrices of ones in a random binary matrix
    • SUN, X. and NOBEL, A. B. (2008). On the size and recovery of submatrices of ones in a random binary matrix. J. Mach. Learn. Res. 9 2431-2453.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2431-2453
    • Sun, X.1    Nobel, A.B.2
  • 68
    • 84883866510 scopus 로고    scopus 로고
    • On the maximal size of large-average and ANOVA-fit submatrices in a Gaussian random matrix
    • SUN, X. and NOBEL, A. B. (2013). On the maximal size of large-average and ANOVA-fit submatrices in a Gaussian random matrix. Bernoulli 19 275-294.
    • (2013) Bernoulli , vol.19 , pp. 275-294
    • Sun, X.1    Nobel, A.B.2
  • 69
    • 73949155727 scopus 로고    scopus 로고
    • Springer, New York. Revised and extended from the 2004 French original, translated by Vladimir Zaiats
    • TSYBAKOV, A. B. (2009). Introduction to Nonparametric Estimation. Springer, New York. Revised and extended from the 2004 French original, translated by Vladimir Zaiats.
    • (2009) Introduction to Nonparametric Estimation
    • Tsybakov, A.B.1
  • 70
    • 84938533326 scopus 로고    scopus 로고
    • Introduction to the non-asymptotic analysis of random matrices
    • VERSHYNIN, R. (2012). Introduction to the non-asymptotic analysis of random matrices. In Compressed Sensing 210-268.
    • (2012) Compressed Sensing , pp. 210-268
    • Vershynin, R.1
  • 71
    • 84857090762 scopus 로고    scopus 로고
    • Minimax risks for sparse regressions: Ultra-high dimensional phenomenons
    • VERZELEN, N. (2012). Minimax risks for sparse regressions: Ultra-high dimensional phenomenons. Electron. J. Stat. 6 38-90.
    • (2012) Electron. J. Stat. , vol.6 , pp. 38-90
    • Verzelen, N.1
  • 72
  • 74
    • 0001136512 scopus 로고
    • On the limit of the largest eigenvalue of the large-dimensional sample covariance matrix
    • YIN, Y. Q., BAI, Z. D. and KRISHNAIAH, P. R. (1988). On the limit of the largest eigenvalue of the large-dimensional sample covariance matrix. Probab. Theory Related Fields 78 509-521.
    • (1988) Probab. Theory Related Fields , vol.78 , pp. 509-521
    • Yin, Y.Q.1    Bai, Z.D.2    Krishnaiah, P.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.