메뉴 건너뛰기




Volumn 45, Issue 3, 2014, Pages 241-253

Bankruptcy prediction using SVM models with a new approach to combine features selection and parameter optimisation

Author keywords

bankruptcy prediction; direct search; genetic algorithm; support vector machines

Indexed keywords

BANKRUPTCY PREDICTION; CLASSIFICATION METHODS; DIRECT SEARCH; FEATURES SELECTION; FINANCIAL INSTITUTION; PARAMETER OPTIMISATION; PARAMETER SETTING; QUANTITATIVE METHOD;

EID: 84884893168     PISSN: 00207721     EISSN: 14645319     Source Type: Journal    
DOI: 10.1080/00207721.2012.720293     Document Type: Article
Times cited : (70)

References (30)
  • 1
    • 46749111119 scopus 로고    scopus 로고
    • Comparing the performance of market-based and accounting-based bankruptcy prediction models
    • Agarwal, V, and, Taffler, R. 2008. Comparing the Performance of Market-based and Accounting-based Bankruptcy Prediction Models. Journal of Banking and Finance, 32: 1541-1551.
    • (2008) Journal of Banking and Finance , vol.32 , pp. 1541-1551
    • Agarwal, V.1    Taffler, R.2
  • 3
    • 84980104458 scopus 로고
    • Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy
    • Altman, E I. 1968. Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23: 589-609.
    • (1968) The Journal of Finance , vol.23 , pp. 589-609
    • Altman, E.I.1
  • 4
    • 0002554419 scopus 로고
    • Financial Ratios as Predictors of Failure
    • Beaver, W H. 1966. Financial Ratios as Predictors of Failure. Journal of Accounting Research, 4: 71-111.
    • (1966) Journal of Accounting Research , vol.4 , pp. 71-111
    • Beaver, W.H.1
  • 6
    • 80051475044 scopus 로고    scopus 로고
    • A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method
    • Chen, H L, Yang, B, Wang, G, Liu, J, Xu, X, Wang, S J, and, Liu, D Y. 2011. A Novel Bankruptcy Prediction Model Based on an Adaptive Fuzzy k-nearest Neighbor Method. Knowledge-Based Systems, 24: 1348-1359.
    • (2011) Knowledge-Based Systems , vol.24 , pp. 1348-1359
    • Chen, H.L.1    Yang, B.2    Wang, G.3    Liu, J.4    Xu, X.5    Wang, S.J.6    Liu, D.Y.7
  • 8
    • 82455210873 scopus 로고    scopus 로고
    • Combining meta-learning and search techniques to select parameters for support vector machines
    • Gomes, T AF, Prudĉncio, R BC, Soares, C, Rossi, A LD, and, Carvalho, A. 2012. Combining Meta-learning and Search Techniques to Select Parameters for Support Vector Machines. Neurocomputing, 75: 3-13.
    • (2012) Neurocomputing , vol.75 , pp. 3-13
    • Gomes, T.A.1    Prudĉncio, R.B.2    Soares, C.3    Rossi, A.L.4    Carvalho, A.5
  • 10
    • 70349171833 scopus 로고    scopus 로고
    • Variable selection and oversampling in the use of smooth support vector machines for predicting the default risk of companies
    • Härdle, W, Lee, Y J, Schäfer, D, and, Yeh, Y R. 2009. Variable Selection and Oversampling in the use of Smooth Support Vector Machines for Predicting the Default Risk of Companies. Journal of Forecasting, 28: 512-534.
    • (2009) Journal of Forecasting , vol.28 , pp. 512-534
    • Härdle, W.1    Lee, Y.J.2    Schäfer, D.3    Yeh, Y.R.4
  • 12
    • 0030414816 scopus 로고    scopus 로고
    • Integration of case-based forecasting, neural network, and discriminant analysis for bankruptcy prediction
    • DOI 10.1016/S0957-4174(96)00056-5, PII S0957417496000565
    • Jo, H, and, Han, I. 1996. Integration of Case-based Forecasting, Neural Network, and Discriminant Analysis for Bankruptcy Prediction. Expert Systems with Applications, 11: 415-422. (Pubitemid 126350920)
    • (1996) Expert Systems with Applications , vol.11 , pp. 415-422
    • Jo, H.1    Han, I.2
  • 13
    • 84884865983 scopus 로고    scopus 로고
    • MATHWORKS (2006). 'Genetic Algorithm and Direct Search Toolbox: User's Guide
    • MATHWORKS (2006). 'Genetic Algorithm and Direct Search Toolbox: User's Guide'. http://www.mathworks.com/
  • 14
    • 0037117685 scopus 로고    scopus 로고
    • Genetic programming and rough sets: A hybrid approach to bankruptcy classification
    • DOI 10.1016/S0377-2217(01)00130-8, PII S0377221701001308
    • McKee, T E, and, Lensberg, T. 2002. Genetic Programming and Rough Sets: A Hybrid Approach to Bankruptcy Classification. European Journal of Operational Research, 138: 436-451. (Pubitemid 34065108)
    • (2002) European Journal of Operational Research , vol.138 , Issue.2 , pp. 436-451
    • McKee, T.E.1    Lensberg, T.2
  • 15
    • 33744925661 scopus 로고    scopus 로고
    • Hybrid genetic algorithms and support vector machines for bankruptcy prediction
    • DOI 10.1016/j.eswa.2005.09.070, PII S0957417405002770
    • Min, S H, Lee, J, and, Han, I. 2006. Hybrid Genetic Algorithms and Support Vector Machines for Bankruptcy Prediction. Expert Systems with Applications, 31: 652-660. (Pubitemid 43841989)
    • (2006) Expert Systems with Applications , vol.31 , Issue.3 , pp. 652-660
    • Min, S.-H.1    Lee, J.2    Han, I.3
  • 16
    • 52649087846 scopus 로고    scopus 로고
    • Bankruptcy prediction using a discrete-time duration model incorporating temporal and macroeconomic dependencies
    • Nam, C W, Kim, T S, Park, N J, and, Lee, H K. 2008. Bankruptcy Prediction Using a Discrete-time Duration Model Incorporating Temporal and Macroeconomic Dependencies. Journal of Forecasting, 27: 493-506.
    • (2008) Journal of Forecasting , vol.27 , pp. 493-506
    • Nam, C.W.1    Kim, T.S.2    Park, N.J.3    Lee, H.K.4
  • 17
    • 79953161433 scopus 로고    scopus 로고
    • DEa as a tool for predicting corporate failure and success: A case of bankruptcy assessment
    • Premachandra, I M, Chen, Y, and, Watson, J. 2011. DEA as a Tool for Predicting Corporate Failure and Success: A Case of Bankruptcy Assessment. Omega, 39: 620-626.
    • (2011) Omega , vol.39 , pp. 620-626
    • Premachandra, I.M.1    Chen, Y.2    Watson, J.3
  • 18
    • 33846314346 scopus 로고    scopus 로고
    • Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review
    • DOI 10.1016/j.ejor.2006.08.043, PII S0377221706008769
    • Ravi Kumar, P, and, Ravi, V. 2007. Bankruptcy Prediction in Banks and Firms via Statistical and Intelligent Techniques-A Review. European Journal of Operational Research, 180: 1-28. (Pubitemid 46123864)
    • (2007) European Journal of Operational Research , vol.180 , Issue.1 , pp. 1-28
    • Ravi Kumar, P.1    Ravi, V.2
  • 19
    • 84866451766 scopus 로고    scopus 로고
    • Prediction of corporate financial distress: An application of the america banking industry
    • Shie, F S, Chen, M-Y, and, Liu, Y-S. 2012. Prediction of Corporate Financial Distress: An Application of the America Banking Industry. Neural Computing and Applications,.
    • (2012) Neural Computing and Applications
    • Shie, F.S.1    Chen, M.-Y.2    Liu, Y.-S.3
  • 20
    • 9244259665 scopus 로고    scopus 로고
    • An application of support vector machines in bankruptcy prediction model
    • Shin, K S, Lee, T S, and, Kim, H J. 2005. An Application of Support Vector Machines in Bankruptcy Prediction Model. Expert Systems with Applications, 28: 127-135.
    • (2005) Expert Systems with Applications , vol.28 , pp. 127-135
    • Shin, K.S.1    Lee, T.S.2    Kim, H.J.3
  • 24
    • 1842663087 scopus 로고    scopus 로고
    • Default Risk in Equity Returns
    • DOI 10.1111/j.1540-6261.2004.00650.x
    • Vassalou, M, and, Xing, Y. 2004. Default Risk in Equity Returns. The Journal of Finance, 59: 831-868. (Pubitemid 38483897)
    • (2004) Journal of Finance , vol.59 , Issue.2 , pp. 831-868
    • Vassalou, M.1    Xing, Y.2
  • 25
    • 77951880059 scopus 로고    scopus 로고
    • Hybrid and ensemble-based soft computing techniques in bankruptcy prediction: A survey
    • Verikas, A, Kalsyte, Z, Bacauskiene, M, and, Gelzinis, A. 2010. Hybrid and Ensemble-based Soft Computing Techniques in Bankruptcy Prediction: A survey. Soft Computing, 14: 995-1010.
    • (2010) Soft Computing , vol.14 , pp. 995-1010
    • Verikas, A.1    Kalsyte, Z.2    Bacauskiene, M.3    Gelzinis, A.4
  • 26
    • 84871619666 scopus 로고    scopus 로고
    • Extraction of classification rules characterized by ellipsoidal regions using soft-computing techniques
    • Wang, D H, and, Dillon, T S. 2006. Extraction of Classification Rules Characterized by Ellipsoidal Regions Using Soft-computing Techniques. International Journal of Systems Science, 37: 969-980.
    • (2006) International Journal of Systems Science , vol.37 , pp. 969-980
    • Wang, D.H.1    Dillon, T.S.2
  • 27
    • 0028444978 scopus 로고
    • Bankruptcy prediction using neural networks
    • Wilson, R L, and, Sharda, R. 1994. Bankruptcy Prediction Using Neural Networks. Decision Support Systems, 11: 545-557. 9236(94)90024-8
    • (1994) Decision Support Systems , vol.11 , pp. 545-557
    • Wilson, R.L.1    Sharda, R.2
  • 28
    • 33751068050 scopus 로고    scopus 로고
    • A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy
    • Wu, C H, Tzeng, G H, Goo, Y J, and, Fang, W C. 2007. A Real-valued Genetic Algorithm to Optimize the Parameters of Support Vector Machine for Predicting Bankruptcy. Expert Systems with Applications, 32: 397-408.
    • (2007) Expert Systems with Applications , vol.32 , pp. 397-408
    • Wu, C.H.1    Tzeng, G.H.2    Goo, Y.J.3    Fang, W.C.4
  • 29
    • 84867912479 scopus 로고    scopus 로고
    • Corporate financial crisis prediction using svm models with direct search for features selection and parameters optimization
    • Zhou, L. and Lai, K.K. (2012), 'Corporate Financial Crisis Prediction Using SVM Models with Direct Search for Features Selection and Parameters Optimization', in International Joint Conference on Computational Sciences and Optimization, pp. 760-764
    • (2012) International Joint Conference on Computational Sciences and Optimization , pp. 760-764
    • Zhou, L.1    Lai, K.K.2
  • 30
    • 55549146101 scopus 로고    scopus 로고
    • Credit scoring using support vector machines with direct search for parameters selection
    • Zhou, L, Lai, K K, and, Yu, L. 2008. Credit Scoring Using Support Vector Machines with Direct Search for Parameters Selection. Soft Computing, 13: 149-155.
    • (2008) Soft Computing , vol.13 , pp. 149-155
    • Zhou, L.1    Lai, K.K.2    Yu, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.