메뉴 건너뛰기




Volumn 22, Issue 5, 2013, Pages 1401-1410

The application of nanoscale materials in groundwater remediation

Author keywords

Carbon nanotubes; Groundwater; Nanotechnology; nZVI; Remediation

Indexed keywords


EID: 84884678107     PISSN: 12301485     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Review
Times cited : (46)

References (72)
  • 3
    • 33746062059 scopus 로고    scopus 로고
    • Nanotechnologies for environmental cleanup
    • TRATNYEK P. G., JOHNSON R. L. Nanotechnologies for environmental cleanup. Nano Today 1, 44, 2006.
    • (2006) Nano Today , vol.1 , pp. 44
    • Tratnyek, P.G.1    Johnson, R.L.2
  • 4
    • 35348852487 scopus 로고    scopus 로고
    • Occurrence, behavior and effects of nanoparticles in the environment
    • NOWACK B., BUCHELI T. D. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150, 5, 2007
    • (2007) Environ. Pollut. , vol.150 , pp. 5
    • Nowack, B.1    Bucheli, T.D.2
  • 5
    • 84884693601 scopus 로고    scopus 로고
    • Current experiences and future perspectives of nanoscale zero-valent iron application in the Czech Republic
    • ČERNÍK M., KVAPIL P., ŠURÁNOVÁ R. Current experiences and future perspectives of nanoscale zero-valent iron application in the Czech Republic. Ent magazíne, 2010.
    • (2010) Ent magazíne
    • Černík, M.1    Kvapil, P.2    Šuránová, R.3
  • 6
    • 78751624554 scopus 로고    scopus 로고
    • Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching
    • KLIMKOVA S., CERNIK M., LACINOVA L., FILIP J., JANCIK D., ZBORIL R. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere 82, 1178, 2011.
    • (2011) Chemosphere , vol.82 , pp. 1178
    • Klimkova, S.1    Cernik, M.2    Lacinova, L.3    Filip, J.4    Jancik, D.5    Zboril, R.6
  • 8
    • 74249111081 scopus 로고    scopus 로고
    • U.S. EPA Office of Superfund Remediation and Technology Innovation
    • U.S. EPA Office of Superfund Remediation and Technology Innovation. Nanotechnology for Site Remediation Fact Sheet, 2008.
    • (2008) Nanotechnology for Site Remediation Fact Sheet
  • 9
    • 84999709222 scopus 로고    scopus 로고
    • Nanotechnology for site remediation
    • OTTO M., FLOYD M., BAJPAI S. Nanotechnology for site remediation. Remediation 19, 99, 2008.
    • (2008) Remediation , vol.19 , pp. 99
    • Otto, M.1    Floyd, M.2    Bajpai, S.3
  • 10
    • 49849093393 scopus 로고    scopus 로고
    • Environmental applications of carbon-based nanomaterials
    • MAUTER M. S., ELIMELECH M. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol 42, 5843, 2008.
    • (2008) Environ. Sci. Technol , vol.42 , pp. 5843
    • Mauter, M.S.1    Elimelech, M.2
  • 11
    • 77952877757 scopus 로고    scopus 로고
    • Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon encapsulated magnetic nanoparticles
    • PYRZYNSKA K., BYSTRZEJEWSKI M. Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon encapsulated magnetic nanoparticles. Colloid. Surface. A. 362, 102, 2010.
    • (2010) Colloid. Surface. A. , vol.362 , pp. 102
    • Pyrzynska, K.1    Bystrzejewski, M.2
  • 12
    • 38349061030 scopus 로고    scopus 로고
    • 2+ from aqueous solution by carbon nanotubes and granular activated carbon
    • 2+ from aqueous solution by carbon nanotubes and granular activated carbon. J. Hazard. Mater. 151, 239, 2008.
    • (2008) J. Hazard. Mater. , vol.151 , pp. 239
    • Lu, C.1    Liu, C.2    Rao, G.P.3
  • 13
    • 85015269532 scopus 로고    scopus 로고
    • Carbon-based nanomaterials. Environmental applications
    • In Nanomaterials and nanostructures for various applications. Ed. Academiei Romane
    • ION A. C., ION I., CULETU A. Carbon-based nanomaterials. Environmental applications, In Series in Micro and Nanoengineering, vol. 19, Nanomaterials and nanostructures for various applications. Ed. Academiei Romane, 31-57, 2012.
    • (2012) Series in Micro and Nanoengineering , vol.19 , pp. 31-57
    • Ion, A.C.1    Ion, I.2    Culetu, A.3
  • 14
    • 24144478859 scopus 로고    scopus 로고
    • Nanomaterials and water purification: Opportunities and challenges
    • SAVAGE N., DIALLO M. S. Nanomaterials and water purification: Opportunities and challenges. J. Nanopart. Res. 7, 331, 2005.
    • (2005) J. Nanopart. Res. , vol.7 , pp. 331
    • Savage, N.1    Diallo, M.S.2
  • 15
    • 84884693493 scopus 로고    scopus 로고
    • Enhanced environmental remediation and dealination using carbon nanotubes immobilized porous polymeric membranes
    • SAE-KHOW O., GETHARD K., MITRA S. Enhanced environmental remediation and dealination using carbon nanotubes immobilized porous polymeric membranes. Abstr. Pap. Am. Chem. S. 241, 2011.
    • (2011) Abstr. Pap. Am. Chem. , pp. 241
    • Sae-Khow, O.1    Gethard, K.2    Mitra, S.3
  • 17
    • 79953180524 scopus 로고    scopus 로고
    • Lead adsorption onto exfoliated graphitic nanoplatelets in aqueous solutions
    • ION A. C., ION I., CULETU A. Lead adsorption onto exfoliated graphitic nanoplatelets in aqueous solutions. Mater. Sci. Eng. B-Adv 176, 504, 2011.
    • (2011) Mater. Sci. Eng. B-Adv , vol.176 , pp. 504
    • Ion, A.C.1    Ion, I.2    Culetu, A.3
  • 18
    • 59649125809 scopus 로고    scopus 로고
    • Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions
    • BYSTRZEJEWSKI M., PYRZYNSKA K., HUCZKO A., LANGE H. Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions. Carbon 47, 1201, 2009.
    • (2009) Carbon , vol.47 , pp. 1201
    • Bystrzejewski, M.1    Pyrzynska, K.2    Huczko, A.3    Lange, H.4
  • 20
    • 29144511330 scopus 로고    scopus 로고
    • Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution
    • LI Y-H., ZHU Y., ZHAO Y., WU D., LUAN Z. Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution. Diam. Relat. Mater. 15, 90, 2006.
    • (2006) Diam. Relat. Mater. , vol.15 , pp. 90
    • Li, Y.-H.1    Zhu, Y.2    Zhao, Y.3    Wu, D.4    Luan, Z.5
  • 21
    • 0344089039 scopus 로고    scopus 로고
    • Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes
    • LI Y-H., WANG S., LUAN Z., DING J., XU C., WU D. Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41, 1057, 2003.
    • (2003) Carbon , vol.41 , pp. 1057
    • Li, Y.-H.1    Wang, S.2    Luan, Z.3    Ding, J.4    Xu, C.5    Wu, D.6
  • 23
    • 29344464109 scopus 로고    scopus 로고
    • Adsorption of zinc(II) from water with purified carbon nanotubes
    • LU C., CHIU H. Adsorption of zinc(II) from water with purified carbon nanotubes. Chem. Eng. Sci. 61, 1138, 2006.
    • (2006) Chem. Eng. Sci. , vol.61 , pp. 1138
    • Lu, C.1    Chiu, H.2
  • 24
    • 35348950183 scopus 로고    scopus 로고
    • Adsorption of heavy metal ions with carbon nanotubes
    • STAFIEJ A., PYRZYNSKA K. Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol. 58, 49, 2007.
    • (2007) Sep. Purif. Technol. , vol.58 , pp. 49
    • Stafiej, A.1    Pyrzynska, K.2
  • 25
    • 35648951687 scopus 로고    scopus 로고
    • Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II)
    • WANG H., ZHOU A., PENG F., YU H., YANG J. Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II). J. Colloid Interf. Sci. 316, 277, 2007.
    • (2007) J. Colloid Interf. Sci. , vol.316 , pp. 277
    • Wang, H.1    Zhou, A.2    Peng, F.3    Yu, H.4    Yang, J.5
  • 26
    • 67349226403 scopus 로고    scopus 로고
    • Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA
    • YANG S., LI J., SHAO D., HU J., WANG X. Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 166, 109, 2009.
    • (2009) J. Hazard. Mater. , vol.166 , pp. 109
    • Yang, S.1    Li, J.2    Shao, D.3    Hu, J.4    Wang, X.5
  • 27
  • 28
    • 71249156446 scopus 로고    scopus 로고
    • Water purification of removal aqueous copper (II) by as-grown and modified multi-walled carbon nanotubes
    • KUO C-Y. Water purification of removal aqueous copper (II) by as-grown and modified multi-walled carbon nanotubes. Desalination 249, 781, 2009.
    • (2009) Desalination , vol.249 , pp. 781
    • Kuo, C.-Y.1
  • 30
    • 34547539825 scopus 로고    scopus 로고
    • Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters
    • GOTOVAC S., YANG C. M., HATTORI Y., TAKAHASHI K., KANOH H., KANEKO K. Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters. J. Colloid Interf. Sci. 314, 18, 2007.
    • (2007) J. Colloid Interf. Sci. , vol.314 , pp. 18
    • Gotovac, S.1    Yang, C.M.2    Hattori, Y.3    Takahashi, K.4    Kanoh, H.5    Kaneko, K.6
  • 31
    • 34548639991 scopus 로고    scopus 로고
    • Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review
    • RAO G. P., LU C., SU F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Sep. Purif. Technol. 58, 224, 2007.
    • (2007) Sep. Purif. Technol. , vol.58 , pp. 224
    • Rao, G.P.1    Lu, C.2    Su, F.3
  • 32
    • 84860522185 scopus 로고    scopus 로고
    • Optimization of ethylenediamine-grafted multiwalled carbon nanotubes for solid-phase extraction of lead cations
    • HU Z. J., CUI Y., LIU S., YUAN Y., GAO H. W. Optimization of ethylenediamine-grafted multiwalled carbon nanotubes for solid-phase extraction of lead cations. Environ. Sci. Pollut. R. 19, 1237, 2012.
    • (2012) Environ. Sci. Pollut. R. , vol.19 , pp. 1237
    • Hu, Z.J.1    Cui, Y.2    Liu, S.3    Yuan, Y.4    Gao, H.W.5
  • 34
    • 77952673309 scopus 로고    scopus 로고
    • A sorption kinetics model for arsenic adsorption to magnetite nanoparticles
    • SHIPLEY H. J., YEAN S., KAN A. T., TOMSON M. B. A sorption kinetics model for arsenic adsorption to magnetite nanoparticles. Environ. Sci. Pollut. R. 17, 1053, 2010.
    • (2010) Environ. Sci. Pollut. R. , vol.17 , pp. 1053
    • Shipley, H.J.1    Yean, S.2    Kan, A.T.3    Tomson, M.B.4
  • 36
    • 79951770094 scopus 로고    scopus 로고
    • Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: Effect of particle size, solid concentration, and exhaustion
    • ENGATES K. E., SHIPLEY H. J. Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ. Sci. Pollut. R. 18, 386, 2011.
    • (2011) Environ. Sci. Pollut. R. , vol.18 , pp. 386
    • Engates, K.E.1    Shipley, H.J.2
  • 37
    • 84871714598 scopus 로고    scopus 로고
    • Removal of Pb(II) and Cd(II) ions from water by Fe and Ag nanoparticles prepared using electro-exploding wire technique
    • ALQUDAMI A., ALHEMIARY N.A., MUNASSAR S. Removal of Pb(II) and Cd(II) ions from water by Fe and Ag nanoparticles prepared using electro-exploding wire technique. Environ. Sci. Pollut. R., 19, (7), 2832, 2011.
    • (2011) Environ. Sci. Pollut. R. , vol.19 , Issue.7 , pp. 2832
    • Alqudami, A.1    Alhemiary, N.A.2    Munassar, S.3
  • 38
    • 70349636919 scopus 로고    scopus 로고
    • Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles
    • LISHA K. P., ANSHUP, PRADEEP T. Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles. Gold Bull. 42, 144, 2009.
    • (2009) Gold Bull. , vol.42 , pp. 144
    • Lisha, K.P.1    Anshup, P.T.2
  • 40
    • 33645230356 scopus 로고    scopus 로고
    • Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials
    • YANG K., ZHU L., XING B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ. Sci. Technol. 40, 1855, 2006.
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 1855
    • Yang, K.1    Zhu, L.2    Xing, B.3
  • 41
    • 17744368678 scopus 로고    scopus 로고
    • Adsorption of trihalomethanes from water with carbon nanotubes
    • LU C., CHUNG Y-L., CHANG K-F. Adsorption of trihalomethanes from water with carbon nanotubes. Water Res 39, 1183, 2005.
    • (2005) Water Res , vol.39 , pp. 1183
    • Lu, C.1    Chung, Y.-L.2    Chang, K.-F.3
  • 42
    • 33748790423 scopus 로고    scopus 로고
    • Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes
    • YANG K., WANG X., ZHU L., XING B. Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes. Environ. Sci. Technol. 40, 5804, 2006.
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 5804
    • Yang, K.1    Wang, X.2    Zhu, L.3    Xing, B.4
  • 43
    • 2642558869 scopus 로고    scopus 로고
    • Naphthalene adsorption and desorption from Aqueous C-60 fullerene
    • CHENG X. K., KAN A.T., TOMSON M. B. Naphthalene adsorption and desorption from Aqueous C-60 fullerene. J. Chem. Eng. Data. 49, 675, 2004.
    • (2004) J. Chem. Eng. Data. , vol.49 , pp. 675
    • Cheng, X.K.1    Kan, A.T.2    Tomson, M.B.3
  • 44
    • 77950630039 scopus 로고    scopus 로고
    • Removal of polychlorinated biphenyls from aqueous solutions using beta-cyclodextrin grafted multiwalled carbon nanotubes
    • SHAO D., SHENG G., CHEN C., WANG X., NAGATSU M. Removal of polychlorinated biphenyls from aqueous solutions using beta-cyclodextrin grafted multiwalled carbon nanotubes. Chemosphere 79, 679, 2010.
    • (2010) Chemosphere , vol.79 , pp. 679
    • Shao, D.1    Sheng, G.2    Chen, C.3    Wang, X.4    Nagatsu, M.5
  • 45
    • 77955426408 scopus 로고    scopus 로고
    • Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes
    • WANG X., LIU Y., TAO S., XING B. Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes. Carbon 48, 3721, 2010.
    • (2010) Carbon , vol.48 , pp. 3721
    • Wang, X.1    Liu, Y.2    Tao, S.3    Xing, B.4
  • 46
    • 77953133295 scopus 로고    scopus 로고
    • Adsorption of nonpolar benzene derivatives on single-walled carbon nanotubes
    • CHIN C-J. M., SHIH M-W, TSAI H-J. Adsorption of nonpolar benzene derivatives on single-walled carbon nanotubes. Appl. Surf. Sci. 256, 6035, 2010.
    • (2010) Appl. Surf. Sci. , vol.256 , pp. 6035
    • Chin, C.-J.M.1    Shih, M.-W.2    Tsai, H.-J.3
  • 47
    • 71249085939 scopus 로고    scopus 로고
    • Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes
    • SU F., LU C., HU S. Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes. Colloid. Surface. A 353, 83, 2010.
    • (2010) Colloid. Surface. A , vol.353 , pp. 83
    • Su, F.1    Lu, C.2    Hu, S.3
  • 49
    • 24144502033 scopus 로고    scopus 로고
    • Uptake and sequestration of naphthalene and 1,2-dichlorobenzene by C-60
    • CHENG X. K., KAN A.T., TOMSON M.B. Uptake and sequestration of naphthalene and 1,2-dichlorobenzene by C-60. J. Nanopart. Res. 7, 555, 2005.
    • (2005) J. Nanopart. Res. , vol.7 , pp. 555
    • Cheng, X.K.1    Kan, A.T.2    Tomson, M.B.3
  • 51
    • 67649243520 scopus 로고    scopus 로고
    • Catalytic growth of carbon nanotubes and nanofibers on vermiculite to produce floatable hydrophobic "nanosponges" for oil spill remediation
    • MOURA F. C. C., LAGO R. M. Catalytic growth of carbon nanotubes and nanofibers on vermiculite to produce floatable hydrophobic "nanosponges" for oil spill remediation. Appl. Catal. B-Environ. 90, 436, 2009.
    • (2009) Appl. Catal. B-Environ. , vol.90 , pp. 436
    • Moura, F.C.C.1    Lago, R.M.2
  • 52
    • 84863854241 scopus 로고    scopus 로고
    • Fabrication of magnetic Ni nanoparticles functionalized water-soluble grapheme sheets nanocomposites as sorbent for aromatic compounds removal
    • Li S., NIU Z., Zhong X., Yang H., LEI Y., ZHANG F., HU W., DONG Z., JIN J., MA J. Fabrication of magnetic Ni nanoparticles functionalized water-soluble grapheme sheets nanocomposites as sorbent for aromatic compounds removal. J. Hazard. Mater. 229-230, 42, 2012.
    • (2012) J. Hazard. Mater. , vol.229-230 , pp. 42
    • Li, S.1    Niu, Z.2    Zhong, X.3    Yang, H.4    Lei, Y.5    Zhang, F.6    Hu, W.7    Dong, Z.8    Jin, J.9    Ma, J.10
  • 53
    • 79953319164 scopus 로고    scopus 로고
    • Study on phenol adsorption from aqueous solutions on exfoliated graphitic nanoplatelets
    • ION A.C., ALPATOVA, A., ION I., CULETU, A. Study on phenol adsorption from aqueous solutions on exfoliated graphitic nanoplatelets. Mater. Sci. Eng. B, 176, (7), 588, 2011.
    • (2011) Mater. Sci. Eng. B , vol.176 , Issue.7 , pp. 588
    • Ion, A.C.1    Alpatova, A.2    Ion, I.3    Culetu, A.4
  • 54
    • 0034022401 scopus 로고    scopus 로고
    • Zero-valent iron for water treatment
    • BIGG T., JUDD S. J. Zero-valent iron for water treatment. Environ. Technol. 21, 661, 2000.
    • (2000) Environ. Technol. , vol.21 , pp. 661
    • Bigg, T.1    Judd, S.J.2
  • 55
    • 0029328683 scopus 로고
    • Zero-Valent Iron for the in-Situ Remediation of Selected Metals in Groundwater
    • CANTRELL K. J., KAPLAN D. I., WIETSMA T. W. Zero-Valent Iron for the in-Situ Remediation of Selected Metals in Groundwater. J. Hazard. Mater. 42, 201, 1995.
    • (1995) J. Hazard. Mater. , vol.42 , pp. 201
    • Cantrell, K.J.1    Kaplan, D.I.2    Wietsma, T.W.3
  • 56
    • 0032788755 scopus 로고    scopus 로고
    • Uranium removal from ground water using zero valent iron media
    • FARRELL J., BOSTICK W. D., JARABEK R. J., FIEDOR J. N. Uranium removal from ground water using zero valent iron media. Ground Water 37, 618, 1999.
    • (1999) Ground Water , vol.37 , pp. 618
    • Farrell, J.1    Bostick, W.D.2    Jarabek, R.J.3    Fiedor, J.N.4
  • 58
    • 78649710215 scopus 로고    scopus 로고
    • Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off?
    • GRIEGER K. D., FJORDBOGE A., HARTMANN N. B., ERIKSSON E., BJERG P. L., BAUN A. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off? J. Contam. Hydrol. 118, 165, 2010.
    • (2010) J. Contam. Hydrol. , vol.118 , pp. 165
    • Grieger, K.D.1    Fjordboge, A.2    Hartmann, N.B.3    Eriksson, E.4    Bjerg, P.L.5    Baun, A.6
  • 59
    • 48049091375 scopus 로고    scopus 로고
    • Zero-valent iron and organic carbon mixtures for remediation of acid mine drainage: Batch experiments
    • LINDSAY M. B. J., PTACEK C. J., BLOWES D. W., GOULD W. D. Zero-valent iron and organic carbon mixtures for remediation of acid mine drainage: Batch experiments. Appl. Geochem. 23, 2214, 2008.
    • (2008) Appl. Geochem. , vol.23 , pp. 2214
    • Lindsay, M.B.J.1    Ptacek, C.J.2    Blowes, D.W.3    Gould, W.D.4
  • 60
    • 0041375359 scopus 로고    scopus 로고
    • Nanoscale iron particles for environmental remediation: An overview
    • ZHANG W-X. Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res. 5, 323, 2003.
    • (2003) J. Nanopart. Res. , vol.5 , pp. 323
    • Zhang, W.-X.1
  • 61
    • 79954629275 scopus 로고    scopus 로고
    • Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water
    • CRANE R. A., DICKINSON M., POPESCU I. C., SCOTT T. B. Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res. 45, 2931, 2011.
    • (2011) Water Res. , vol.45 , pp. 2931
    • Crane, R.A.1    Dickinson, M.2    Popescu, I.C.3    Scott, T.B.4
  • 62
    • 77951623664 scopus 로고    scopus 로고
    • The application of zerovalent iron nanoparticles for the remediation of a uraniumcontaminated waste effluent
    • DICKINSON M., SCOTT T. B. The application of zerovalent iron nanoparticles for the remediation of a uraniumcontaminated waste effluent. J. Hazard. Mater. 178, 171, 2010.
    • (2010) J. Hazard. Mater. , vol.178 , pp. 171
    • Dickinson, M.1    Scott, T.B.2
  • 64
    • 79956366913 scopus 로고    scopus 로고
    • Integration of emulsified nanoiron injection with the electrokinetic process for remediation of trichloroethylene in saturated soil
    • YANG G. C. C., CHANG Y-I. Integration of emulsified nanoiron injection with the electrokinetic process for remediation of trichloroethylene in saturated soil. Sep. Purif. Technol. 79, 278, 2011.
    • (2011) Sep. Purif. Technol. , vol.79 , pp. 278
    • Yang, G.C.C.1    Chang, Y.-I.2
  • 65
    • 67349192188 scopus 로고    scopus 로고
    • Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications
    • BEZBARUAH A. N., KRAJANGPAN S., CHISHOLM B. J., KHAN E., BERMUDEZ J. J. E. Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J. Hazard. Mater. 166, 1339, 2009.
    • (2009) J. Hazard. Mater. , vol.166 , pp. 1339
    • Bezbaruah, A.N.1    Krajangpan, S.2    Chisholm, B.J.3    Khan, E.4    Bermudez, J.J.E.5
  • 68
    • 51649123914 scopus 로고    scopus 로고
    • Health effects related to nanoparticle exposures: Environmental, health and safety considerations for assessing hazards and risks
    • WARHEIT D. B., SAYES C. M., REED K. L., SWAIN K. A. Health effects related to nanoparticle exposures: Environmental, health and safety considerations for assessing hazards and risks. Pharmacol. Therapeut. 120, 35, 2008.
    • (2008) Pharmacol. Therapeut. , vol.120 , pp. 35
    • Warheit, D.B.1    Sayes, C.M.2    Reed, K.L.3    Swain, K.A.4
  • 69
    • 77949915304 scopus 로고    scopus 로고
    • From ecotoxicology to nanoecotoxicology
    • KAHRU A., DUBOURGUIER H. C. From ecotoxicology to nanoecotoxicology. Toxicology 269, 105, 2010.
    • (2010) Toxicology , vol.269 , pp. 105
    • Kahru, A.1    Dubourguier, H.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.