메뉴 건너뛰기




Volumn 18, Issue 3, 2013, Pages 335-356

Hierarchical Bayesian Spatio-Temporal Conway-Maxwell Poisson Models with Dynamic Dispersion

Author keywords

Count data; Empirical orthogonal functions; Hierarchical model; Kernel principal component analysis; Nonlinear; Overdispersion; Threshold vector autoregressive model; Underdispersion

Indexed keywords

BAYESIAN ANALYSIS; CLIMATE CONDITIONS; HIERARCHICAL SYSTEM; MIGRATORY SPECIES; NUMERICAL MODEL; PRINCIPAL COMPONENT ANALYSIS; REGRESSION ANALYSIS; SPATIOTEMPORAL ANALYSIS; VECTOR; WATERFOWL;

EID: 84884674752     PISSN: 10857117     EISSN: 15372693     Source Type: Journal    
DOI: 10.1007/s13253-013-0141-2     Document Type: Article
Times cited : (29)

References (36)
  • 1
    • 0006198702 scopus 로고    scopus 로고
    • Hierarchical Bayesian Time-Series Models
    • Berliner, L. (1996), "Hierarchical Bayesian Time-Series Models," Fundamental Theories of Physics, 79, 15-22.
    • (1996) Fundamental Theories of Physics , vol.79 , pp. 15-22
    • Berliner, L.1
  • 2
    • 0032273615 scopus 로고    scopus 로고
    • General Methods for Monitoring Convergence of Iterative Simulations
    • Brooks, S., and Gelman, A. (1998), "General Methods for Monitoring Convergence of Iterative Simulations," Journal of Computational and Graphical Statistics, 7 (4), 434-455.
    • (1998) Journal of Computational and Graphical Statistics , vol.7 , Issue.4 , pp. 434-455
    • Brooks, S.1    Gelman, A.2
  • 4
    • 0043024584 scopus 로고    scopus 로고
    • Hierarchical Multivariate CAR Models for Spatio-Temporally Correlated Survival Data
    • Carlin, B., and Banerjee, S. (2003), "Hierarchical Multivariate CAR Models for Spatio-Temporally Correlated Survival Data," Bayesian Statistics, 7, 45-64.
    • (2003) Bayesian Statistics , vol.7 , pp. 45-64
    • Carlin, B.1    Banerjee, S.2
  • 5
  • 7
    • 39849095134 scopus 로고    scopus 로고
    • A Flexible Count Data Regression Model for Risk Analysis
    • Guikema, S., and Goffelt, J. (2008), "A Flexible Count Data Regression Model for Risk Analysis," Risk Analysis, 28 (1), 213-223.
    • (2008) Risk Analysis , vol.28 , Issue.1 , pp. 213-223
    • Guikema, S.1    Goffelt, J.2
  • 9
    • 0024900020 scopus 로고
    • Community Structure in North Temperate Ants: Temporal and Spatial Variation
    • Herbers, J. M. (1989), "Community Structure in North Temperate Ants: Temporal and Spatial Variation," Oecologia, 81 (2), 201-211.
    • (1989) Oecologia , vol.81 , Issue.2 , pp. 201-211
    • Herbers, J.M.1
  • 11
    • 34547692612 scopus 로고    scopus 로고
    • Hierarchical Spatio-Temporal Matrix Models for Characterizing Invasions
    • Hooten, M., Wikle, C., Dorazio, R., and Royle, J. (2007), "Hierarchical Spatio-Temporal Matrix Models for Characterizing Invasions," Biometrics, 63 (2), 558-567.
    • (2007) Biometrics , vol.63 , Issue.2 , pp. 558-567
    • Hooten, M.1    Wikle, C.2    Dorazio, R.3    Royle, J.4
  • 12
    • 0024226405 scopus 로고
    • Determinants of Breeding Distributions of Ducks
    • Johnson, D., and Grier, J. (1988), "Determinants of Breeding Distributions of Ducks," in Wildlife Monographs, pp. 3-37.
    • (1988) Wildlife Monographs , pp. 3-37
    • Johnson, D.1    Grier, J.2
  • 15
    • 84863304598 scopus 로고    scopus 로고
    • R Development Core Team3-900051-07-0, Vienna: R Foundation for Statistical Computing
    • R Development Core Team (2012), R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. ISBN: 3-900051-07-0.
    • (2012) R: A Language and Environment for Statistical Computing
  • 16
    • 84993728830 scopus 로고    scopus 로고
    • An Empirical Model for Underdispersed Count Data
    • Ridout, M. S., and Besbeas, P. (2004), "An Empirical Model for Underdispersed Count Data," Statistical Modelling, 4 (1), 77-89.
    • (2004) Statistical Modelling , vol.4 , Issue.1 , pp. 77-89
    • Ridout, M.S.1    Besbeas, P.2
  • 18
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • Schölkopf, B., Smola, A., and Müller, K. (1998), "Nonlinear Component Analysis as a Kernel Eigenvalue Problem," Neural Computation, 10 (5), 1299-1319.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.3
  • 20
    • 77955896676 scopus 로고    scopus 로고
    • A Flexible Regression Model for Count Data
    • Sellers, K., and Shmueli, G. (2010), "A Flexible Regression Model for Count Data," The Annals of Applied Statistics, 4 (2), 943-961.
    • (2010) The Annals of Applied Statistics , vol.4 , Issue.2 , pp. 943-961
    • Sellers, K.1    Shmueli, G.2
  • 23
    • 0031668791 scopus 로고    scopus 로고
    • Potential Effects of Global Warming on Waterfowl Populations Breeding in the Northern Great Plains
    • Sorenson, L., Goldberg, R., Root, T., and Anderson, M. (1998), "Potential Effects of Global Warming on Waterfowl Populations Breeding in the Northern Great Plains," Climatic Change, 40 (2), 343-369.
    • (1998) Climatic Change , vol.40 , Issue.2 , pp. 343-369
    • Sorenson, L.1    Goldberg, R.2    Root, T.3    Anderson, M.4
  • 24
    • 38349018685 scopus 로고    scopus 로고
    • Dimensionality Reduction: A Comparative Review
    • Online Preprint
    • Van der Maaten, L., Postma, E., and Van den Herik, H. (2008). "Dimensionality Reduction: A Comparative Review." Online Preprint.
    • (2008)
    • Van der Maaten, L.1    Postma, E.2    Van den Herik, H.3
  • 25
    • 38449113722 scopus 로고    scopus 로고
    • Quasi-Poisson Vs. Negative Binomial Regression: How Should We Model Overdispersed Count Data?
    • Ver Hoef, J., and Boveng, P. (2007), "Quasi-Poisson Vs. Negative Binomial Regression: How Should We Model Overdispersed Count Data?," Ecology, 88 (11), 2766-2772.
    • (2007) Ecology , vol.88 , Issue.11 , pp. 2766-2772
    • Ver Hoef, J.1    Boveng, P.2
  • 27
    • 84864149265 scopus 로고    scopus 로고
    • Bayesian Multi-Regime Smooth Transition Regression With Ordered Categorical Variables
    • Wang, J., and Holan, S. (2012), "Bayesian Multi-Regime Smooth Transition Regression With Ordered Categorical Variables," Computational Statistics & Data Analysis, 56 (2), 4165-4179.
    • (2012) Computational Statistics & Data Analysis , vol.56 , Issue.2 , pp. 4165-4179
    • Wang, J.1    Holan, S.2
  • 28
    • 0041985115 scopus 로고    scopus 로고
    • Hierarchical Bayesian Models for Predicting the Spread of Ecological Processes
    • Wikle, C. (2003), "Hierarchical Bayesian Models for Predicting the Spread of Ecological Processes," Ecology, 84 (6), 1382-1394.
    • (2003) Ecology , vol.84 , Issue.6 , pp. 1382-1394
    • Wikle, C.1
  • 30
    • 13444293000 scopus 로고    scopus 로고
    • Combining Information Across Spatial Scales
    • Wikle, C., and Berliner, L. (2005), "Combining Information Across Spatial Scales," Techonmetrics, 47, 80-91.
    • (2005) Techonmetrics , vol.47 , pp. 80-91
    • Wikle, C.1    Berliner, L.2
  • 31
    • 0000414912 scopus 로고    scopus 로고
    • A Dimension-Reduced Approach to Space-Time Kalman Filtering
    • Wikle, C., and Cressie, N. (1999), "A Dimension-Reduced Approach to Space-Time Kalman Filtering," Biometrika, 86 (4), 815.
    • (1999) Biometrika , vol.86 , Issue.4 , pp. 815
    • Wikle, C.1    Cressie, N.2
  • 32
    • 79958187878 scopus 로고    scopus 로고
    • Polynomial Nonlinear Spatio-Temporal Integro-Difference Equation Models
    • Wikle, C., and Holan, S. (2011), "Polynomial Nonlinear Spatio-Temporal Integro-Difference Equation Models," Journal of Time Series Analysis, 32 (4), 339-350.
    • (2011) Journal of Time Series Analysis , vol.32 , Issue.4 , pp. 339-350
    • Wikle, C.1    Holan, S.2
  • 34
    • 78449244115 scopus 로고    scopus 로고
    • A General Science-Based Framework for Dynamical Spatio-Temporal Models
    • - (2010), "A General Science-Based Framework for Dynamical Spatio-Temporal Models," Test, 19 (3), 417-451.
    • (2010) Test , vol.19 , Issue.3 , pp. 417-451
    • Wikle, C.1    Hooten, M.2
  • 36
    • 81255149551 scopus 로고    scopus 로고
    • Spatio-Temporal Modeling of Sudden Infant Death Syndrome Data
    • Zhuang, L., and Cressie, N. (2012), "Spatio-Temporal Modeling of Sudden Infant Death Syndrome Data," Statistical Methodology, 9 (1), 117-143.
    • (2012) Statistical Methodology , vol.9 , Issue.1 , pp. 117-143
    • Zhuang, L.1    Cressie, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.