메뉴 건너뛰기




Volumn 227, Issue 7, 2013, Pages 588-601

The rich dynamics of fractional-order gyros applying a fractional controller

Author keywords

Chaotic state; Fractional controller; Gyro system; Maximal Lyapunov exponent; Robust stability

Indexed keywords

CHAOTIC STATE; FRACTIONAL CONTROLLERS; GYRO SYSTEM; MAXIMAL LYAPUNOV EXPONENT; ROBUST STABILITY;

EID: 84884568926     PISSN: 09596518     EISSN: 20413041     Source Type: Journal    
DOI: 10.1177/0959651813492326     Document Type: Article
Times cited : (47)

References (34)
  • 4
    • 84870468536 scopus 로고    scopus 로고
    • Robust fractional order controller based on improved particle swarm optimization algorithm for the wind turbine equipped with a doubly fed asynchronous machine
    • Sedraoui M and Boudjehem D. Robust fractional order controller based on improved particle swarm optimization algorithm for the wind turbine equipped with a doubly fed asynchronous machine. Proc IMechE, Part I: J Systems and Control Engineering 2012; 226: 1274-1286.
    • (2012) Proc IMechE, Part I: J Systems and Control Engineering , vol.226 , pp. 1274-1286
    • Sedraoui, M.1    Boudjehem, D.2
  • 6
    • 84867318457 scopus 로고    scopus 로고
    • Chaos in a fractional-order micro-electro- mechanical resonator and its suppression
    • Aghababa MP. Chaos in a fractional-order micro-electro- mechanical resonator and its suppression. Chinese Phys B 2012; 21: 100505.
    • (2012) Chinese Phys B , vol.21 , pp. 100505
    • Aghababa, M.P.1
  • 7
    • 77956595176 scopus 로고    scopus 로고
    • A new chaotic system with fractional order and its projective synchronization
    • Wu X and Wang H. A new chaotic system with fractional order and its projective synchronization. Nonlinear Dynam 2010; 61: 407-417.
    • (2010) Nonlinear Dynam , vol.61 , pp. 407-417
    • Wu, X.1    Wang, H.2
  • 8
    • 33748532200 scopus 로고    scopus 로고
    • Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems
    • Ge ZM and Yi CX. Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems. Chaos Soliton Fract 2007; 32: 42-61.
    • (2007) Chaos Soliton Fract , vol.32 , pp. 42-61
    • Ge, Z.M.1    Yi, C.X.2
  • 9
    • 45949102670 scopus 로고    scopus 로고
    • Fractional controller to stabilize fixed points of uncertain chaotic systems: Theoretical and experimental study
    • Tavazoei MS, Haeri M and Jafari S. Fractional controller to stabilize fixed points of uncertain chaotic systems: theoretical and experimental study. Proc IMechE, Part I: J Systems and Control Engineering 2008; 222: 175-184.
    • (2008) Proc IMechE, Part I: J Systems and Control Engineering , vol.222 , pp. 175-184
    • Tavazoei, M.S.1    Haeri, M.2    Jafari, S.3
  • 10
    • 84855813743 scopus 로고    scopus 로고
    • Robust finite-time stabilization of fractional-order chaotic systems based on fractional Lyapunov stability theory
    • Aghababa MP. Robust finite-time stabilization of fractional-order chaotic systems based on fractional Lyapunov stability theory. J Comput Nonlin Dyn 2012; 7: 021010.
    • (2012) J Comput Nonlin Dyn , vol.7 , pp. 021010
    • Aghababa, M.P.1
  • 11
    • 84855222892 scopus 로고    scopus 로고
    • Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller
    • Aghababa MP. Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller. Commun Nonlinear Sci 2012; 17: 2670-2681.
    • (2012) Commun Nonlinear Sci , vol.17 , pp. 2670-2681
    • Aghababa, M.P.1
  • 12
    • 84861726301 scopus 로고    scopus 로고
    • Finite-time chaos control and synchronization of fractional-order chaotic (hyperchaotic) systems via fractional nonsingular terminal sliding mode technique
    • Aghababa MP. Finite-time chaos control and synchronization of fractional-order chaotic (hyperchaotic) systems via fractional nonsingular terminal sliding mode technique. Nonlinear Dynam 2012; 69: 247-261.
    • (2012) Nonlinear Dynam , vol.69 , pp. 247-261
    • Aghababa, M.P.1
  • 13
    • 84879783455 scopus 로고    scopus 로고
    • A novel terminal sliding mode controller for a class of non-autonomous fractional-order systems
    • DOI: 10.1007/s11071-013-0822-y
    • Aghababa MP. A novel terminal sliding mode controller for a class of non-autonomous fractional-order systems. Nonlinear Dynam 2013. DOI: 10.1007/s11071-013-0822-y.
    • (2013) Nonlinear Dynam
    • Aghababa, M.P.1
  • 14
    • 0002963435 scopus 로고
    • Double strange attractors in rigid body motion with linear feedback control
    • Leipnik RB and Newton TA. Double strange attractors in rigid body motion with linear feedback control. Phys Lett A 1981; 86: 63-67.
    • (1981) Phys Lett A , vol.86 , pp. 63-67
    • Leipnik, R.B.1    Newton, T.A.2
  • 15
    • 0037461477 scopus 로고    scopus 로고
    • Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping
    • Chen HK. Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping. J Sound Vib 2002; 255: 719-740.
    • (2002) J Sound Vib , vol.255 , pp. 719-740
    • Chen, H.K.1
  • 16
    • 0013405538 scopus 로고    scopus 로고
    • Chaotic motion of a symmetric gyro subjected to a harmonic base excitation
    • Tong X and Mrad N. Chaotic motion of a symmetric gyro subjected to a harmonic base excitation. J Appl Mech: T ASME 2001; 68: 681-684.
    • (2001) J Appl Mech: T ASME , vol.68 , pp. 681-684
    • Tong, X.1    Mrad, N.2
  • 17
    • 0030291594 scopus 로고    scopus 로고
    • The regular and chaotic motion of a symmetric heavy gyroscope with harmonic excitation
    • Ge ZM, Chen HK and Chen HH. The regular and chaotic motion of a symmetric heavy gyroscope with harmonic excitation. J Sound Vib 1996; 198: 131-147.
    • (1996) J Sound Vib , vol.198 , pp. 131-147
    • Ge, Z.M.1    Chen, H.K.2    Chen, H.H.3
  • 18
    • 21744462060 scopus 로고    scopus 로고
    • Synchronization of two chaotic nonlinear gyros using active control
    • Lei Y, XuW and Zheng H. Synchronization of two chaotic nonlinear gyros using active control. Phys Lett A 2005; 343: 153-158.
    • (2005) Phys Lett A , vol.343 , pp. 153-158
    • Xuw, L.Y.1    Zheng, H.2
  • 19
    • 34548535118 scopus 로고    scopus 로고
    • Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input
    • Hung M, Yan J and Liao T. Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input. Chaos Soliton Fract 2008; 35: 181-187.
    • (2008) Chaos Soliton Fract , vol.35 , pp. 181-187
    • Hung, M.1    Yan, J.2    Liao, T.3
  • 20
    • 34247352934 scopus 로고    scopus 로고
    • Nonlinear rule-based controller for chaos synchronization of two gyros with linear-plus-cubic damping
    • Yau H. Nonlinear rule-based controller for chaos synchronization of two gyros with linear-plus-cubic damping. Chaos Soliton Fract 2007; 34: 1357-1365.
    • (2007) Chaos Soliton Fract , vol.34 , pp. 1357-1365
    • Yau, H.1
  • 21
    • 36049001757 scopus 로고    scopus 로고
    • Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control
    • Yau H. Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control. Mech Syst Signal Pr 2008; 22: 408-418.
    • (2008) Mech Syst Signal Pr , vol.22 , pp. 408-418
    • Yau, H.1
  • 22
    • 34249739133 scopus 로고    scopus 로고
    • Controlling chaos of a chaotic nonlinear gyro using variable structure control
    • Yan JJ, Hung ML, Lin JS, et al. Controlling chaos of a chaotic nonlinear gyro using variable structure control. Mech Syst Signal Pr 2007; 21: 2515-2522.
    • (2007) Mech Syst Signal Pr , vol.21 , pp. 2515-2522
    • Yan, J.J.1    Hung, M.L.2    Lin, J.S.3
  • 23
    • 80053122044 scopus 로고    scopus 로고
    • A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs
    • Aghababa MP. A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs. Chinese Phys B 2011; 20: 090505.
    • (2011) Chinese Phys B , vol.20 , pp. 090505
    • Aghababa, M.P.1
  • 24
    • 84858711303 scopus 로고    scopus 로고
    • Finite-time stabilization of uncertain non-autonomous chaotic gyroscopes with nonlinear inputs
    • Aghababa MP and Aghababa HP. Finite-time stabilization of uncertain non-autonomous chaotic gyroscopes with nonlinear inputs. Appl Math Mech: Engl 2012; 33(2): 155-164.
    • (2012) Appl Math Mech: Engl , vol.33 , Issue.2 , pp. 155-164
    • Aghababa, M.P.1    Aghababa, H.P.2
  • 25
    • 84869123532 scopus 로고    scopus 로고
    • Chaos suppression of uncertain gyros in a given finite time
    • Aghababa MP and Aghababa HP. Chaos suppression of uncertain gyros in a given finite time. Chinese Phys B 2012; 21: 110505.
    • (2012) Chinese Phys B , vol.21 , pp. 110505
    • Aghababa, M.P.1    Aghababa, H.P.2
  • 26
    • 84875405060 scopus 로고    scopus 로고
    • Chaos synchronization of gyroscopes using an adaptive robust finite-time controller
    • Aghababa MP and Aghababa HP. Chaos synchronization of gyroscopes using an adaptive robust finite-time controller. J Mech Sci Technol 2013; 27: 909-916.
    • (2013) J Mech Sci Technol , vol.27 , pp. 909-916
    • Aghababa, M.P.1    Aghababa, H.P.2
  • 27
    • 1842581463 scopus 로고    scopus 로고
    • Stabilization of generalized fractional order chaotic systems using state feedback control
    • Ahmad WM, El-Khazali R and Al-Assaf Y. Stabilization of generalized fractional order chaotic systems using state feedback control. Chaos Soliton Fract 2004; 22: 141-150.
    • (2004) Chaos Soliton Fract , vol.22 , pp. 141-150
    • Ahmad, W.M.1    El-Khazali, R.2    Al-Assaf, Y.3
  • 28
    • 76449092011 scopus 로고    scopus 로고
    • Stability of fractionalorder nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability
    • Li Y, Chen YQ and Podlubny I. Stability of fractionalorder nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput Math Appl 2010; 59: 1810-1821.
    • (2010) Comput Math Appl , vol.59 , pp. 1810-1821
    • Li, Y.1    Chen, Y.Q.2    Podlubny, I.3
  • 29
    • 43949166788 scopus 로고
    • A practical method for calculating largest Lyapunov exponents from small data sets
    • Rosenstein MT, Collins JJ and De Luca CJ. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 1993; 65: 117-134.
    • (1993) Physica D , vol.65 , pp. 117-134
    • Rosenstein, M.T.1    Collins, J.J.2    De Luca, C.J.3
  • 30
    • 19044380601 scopus 로고    scopus 로고
    • Control of chaos: Methods and applications in engineering
    • Fradkov AL and Evans RJ. Control of chaos: methods and applications in engineering. Annu Rev Control 2005; 29: 33-56.
    • (2005) Annu Rev Control , vol.29 , pp. 33-56
    • Fradkov, A.L.1    Evans, R.J.2
  • 31
    • 0001795716 scopus 로고    scopus 로고
    • Absolute stability theory and the synchronization problem
    • Curran PF and Chua LO. Absolute stability theory and the synchronization problem. Int J Bifurcat Chaos 1997; 7: 1357-1382.
    • (1997) Int J Bifurcat Chaos , vol.7 , pp. 1357-1382
    • Curran, P.F.1    Chua, L.O.2
  • 34
    • 0036650479 scopus 로고    scopus 로고
    • A predictor- corrector approach for the numerical solution of fractional differential equations
    • Diethelm K, Ford NJ and Freed AD. A predictor- corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynam 2002; 29: 3-22.
    • (2002) Nonlinear Dynam , vol.29 , pp. 3-22
    • Diethelm, K.1    Ford, N.J.2    Freed, A.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.