-
4
-
-
84870468536
-
Robust fractional order controller based on improved particle swarm optimization algorithm for the wind turbine equipped with a doubly fed asynchronous machine
-
Sedraoui M and Boudjehem D. Robust fractional order controller based on improved particle swarm optimization algorithm for the wind turbine equipped with a doubly fed asynchronous machine. Proc IMechE, Part I: J Systems and Control Engineering 2012; 226: 1274-1286.
-
(2012)
Proc IMechE, Part I: J Systems and Control Engineering
, vol.226
, pp. 1274-1286
-
-
Sedraoui, M.1
Boudjehem, D.2
-
6
-
-
84867318457
-
Chaos in a fractional-order micro-electro- mechanical resonator and its suppression
-
Aghababa MP. Chaos in a fractional-order micro-electro- mechanical resonator and its suppression. Chinese Phys B 2012; 21: 100505.
-
(2012)
Chinese Phys B
, vol.21
, pp. 100505
-
-
Aghababa, M.P.1
-
7
-
-
77956595176
-
A new chaotic system with fractional order and its projective synchronization
-
Wu X and Wang H. A new chaotic system with fractional order and its projective synchronization. Nonlinear Dynam 2010; 61: 407-417.
-
(2010)
Nonlinear Dynam
, vol.61
, pp. 407-417
-
-
Wu, X.1
Wang, H.2
-
8
-
-
33748532200
-
Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems
-
Ge ZM and Yi CX. Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems. Chaos Soliton Fract 2007; 32: 42-61.
-
(2007)
Chaos Soliton Fract
, vol.32
, pp. 42-61
-
-
Ge, Z.M.1
Yi, C.X.2
-
9
-
-
45949102670
-
Fractional controller to stabilize fixed points of uncertain chaotic systems: Theoretical and experimental study
-
Tavazoei MS, Haeri M and Jafari S. Fractional controller to stabilize fixed points of uncertain chaotic systems: theoretical and experimental study. Proc IMechE, Part I: J Systems and Control Engineering 2008; 222: 175-184.
-
(2008)
Proc IMechE, Part I: J Systems and Control Engineering
, vol.222
, pp. 175-184
-
-
Tavazoei, M.S.1
Haeri, M.2
Jafari, S.3
-
10
-
-
84855813743
-
Robust finite-time stabilization of fractional-order chaotic systems based on fractional Lyapunov stability theory
-
Aghababa MP. Robust finite-time stabilization of fractional-order chaotic systems based on fractional Lyapunov stability theory. J Comput Nonlin Dyn 2012; 7: 021010.
-
(2012)
J Comput Nonlin Dyn
, vol.7
, pp. 021010
-
-
Aghababa, M.P.1
-
11
-
-
84855222892
-
Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller
-
Aghababa MP. Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller. Commun Nonlinear Sci 2012; 17: 2670-2681.
-
(2012)
Commun Nonlinear Sci
, vol.17
, pp. 2670-2681
-
-
Aghababa, M.P.1
-
12
-
-
84861726301
-
Finite-time chaos control and synchronization of fractional-order chaotic (hyperchaotic) systems via fractional nonsingular terminal sliding mode technique
-
Aghababa MP. Finite-time chaos control and synchronization of fractional-order chaotic (hyperchaotic) systems via fractional nonsingular terminal sliding mode technique. Nonlinear Dynam 2012; 69: 247-261.
-
(2012)
Nonlinear Dynam
, vol.69
, pp. 247-261
-
-
Aghababa, M.P.1
-
13
-
-
84879783455
-
A novel terminal sliding mode controller for a class of non-autonomous fractional-order systems
-
DOI: 10.1007/s11071-013-0822-y
-
Aghababa MP. A novel terminal sliding mode controller for a class of non-autonomous fractional-order systems. Nonlinear Dynam 2013. DOI: 10.1007/s11071-013-0822-y.
-
(2013)
Nonlinear Dynam
-
-
Aghababa, M.P.1
-
14
-
-
0002963435
-
Double strange attractors in rigid body motion with linear feedback control
-
Leipnik RB and Newton TA. Double strange attractors in rigid body motion with linear feedback control. Phys Lett A 1981; 86: 63-67.
-
(1981)
Phys Lett A
, vol.86
, pp. 63-67
-
-
Leipnik, R.B.1
Newton, T.A.2
-
15
-
-
0037461477
-
Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping
-
Chen HK. Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping. J Sound Vib 2002; 255: 719-740.
-
(2002)
J Sound Vib
, vol.255
, pp. 719-740
-
-
Chen, H.K.1
-
16
-
-
0013405538
-
Chaotic motion of a symmetric gyro subjected to a harmonic base excitation
-
Tong X and Mrad N. Chaotic motion of a symmetric gyro subjected to a harmonic base excitation. J Appl Mech: T ASME 2001; 68: 681-684.
-
(2001)
J Appl Mech: T ASME
, vol.68
, pp. 681-684
-
-
Tong, X.1
Mrad, N.2
-
17
-
-
0030291594
-
The regular and chaotic motion of a symmetric heavy gyroscope with harmonic excitation
-
Ge ZM, Chen HK and Chen HH. The regular and chaotic motion of a symmetric heavy gyroscope with harmonic excitation. J Sound Vib 1996; 198: 131-147.
-
(1996)
J Sound Vib
, vol.198
, pp. 131-147
-
-
Ge, Z.M.1
Chen, H.K.2
Chen, H.H.3
-
18
-
-
21744462060
-
Synchronization of two chaotic nonlinear gyros using active control
-
Lei Y, XuW and Zheng H. Synchronization of two chaotic nonlinear gyros using active control. Phys Lett A 2005; 343: 153-158.
-
(2005)
Phys Lett A
, vol.343
, pp. 153-158
-
-
Xuw, L.Y.1
Zheng, H.2
-
19
-
-
34548535118
-
Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input
-
Hung M, Yan J and Liao T. Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input. Chaos Soliton Fract 2008; 35: 181-187.
-
(2008)
Chaos Soliton Fract
, vol.35
, pp. 181-187
-
-
Hung, M.1
Yan, J.2
Liao, T.3
-
20
-
-
34247352934
-
Nonlinear rule-based controller for chaos synchronization of two gyros with linear-plus-cubic damping
-
Yau H. Nonlinear rule-based controller for chaos synchronization of two gyros with linear-plus-cubic damping. Chaos Soliton Fract 2007; 34: 1357-1365.
-
(2007)
Chaos Soliton Fract
, vol.34
, pp. 1357-1365
-
-
Yau, H.1
-
21
-
-
36049001757
-
Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control
-
Yau H. Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control. Mech Syst Signal Pr 2008; 22: 408-418.
-
(2008)
Mech Syst Signal Pr
, vol.22
, pp. 408-418
-
-
Yau, H.1
-
22
-
-
34249739133
-
Controlling chaos of a chaotic nonlinear gyro using variable structure control
-
Yan JJ, Hung ML, Lin JS, et al. Controlling chaos of a chaotic nonlinear gyro using variable structure control. Mech Syst Signal Pr 2007; 21: 2515-2522.
-
(2007)
Mech Syst Signal Pr
, vol.21
, pp. 2515-2522
-
-
Yan, J.J.1
Hung, M.L.2
Lin, J.S.3
-
23
-
-
80053122044
-
A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs
-
Aghababa MP. A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs. Chinese Phys B 2011; 20: 090505.
-
(2011)
Chinese Phys B
, vol.20
, pp. 090505
-
-
Aghababa, M.P.1
-
24
-
-
84858711303
-
Finite-time stabilization of uncertain non-autonomous chaotic gyroscopes with nonlinear inputs
-
Aghababa MP and Aghababa HP. Finite-time stabilization of uncertain non-autonomous chaotic gyroscopes with nonlinear inputs. Appl Math Mech: Engl 2012; 33(2): 155-164.
-
(2012)
Appl Math Mech: Engl
, vol.33
, Issue.2
, pp. 155-164
-
-
Aghababa, M.P.1
Aghababa, H.P.2
-
25
-
-
84869123532
-
Chaos suppression of uncertain gyros in a given finite time
-
Aghababa MP and Aghababa HP. Chaos suppression of uncertain gyros in a given finite time. Chinese Phys B 2012; 21: 110505.
-
(2012)
Chinese Phys B
, vol.21
, pp. 110505
-
-
Aghababa, M.P.1
Aghababa, H.P.2
-
26
-
-
84875405060
-
Chaos synchronization of gyroscopes using an adaptive robust finite-time controller
-
Aghababa MP and Aghababa HP. Chaos synchronization of gyroscopes using an adaptive robust finite-time controller. J Mech Sci Technol 2013; 27: 909-916.
-
(2013)
J Mech Sci Technol
, vol.27
, pp. 909-916
-
-
Aghababa, M.P.1
Aghababa, H.P.2
-
27
-
-
1842581463
-
Stabilization of generalized fractional order chaotic systems using state feedback control
-
Ahmad WM, El-Khazali R and Al-Assaf Y. Stabilization of generalized fractional order chaotic systems using state feedback control. Chaos Soliton Fract 2004; 22: 141-150.
-
(2004)
Chaos Soliton Fract
, vol.22
, pp. 141-150
-
-
Ahmad, W.M.1
El-Khazali, R.2
Al-Assaf, Y.3
-
28
-
-
76449092011
-
Stability of fractionalorder nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability
-
Li Y, Chen YQ and Podlubny I. Stability of fractionalorder nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput Math Appl 2010; 59: 1810-1821.
-
(2010)
Comput Math Appl
, vol.59
, pp. 1810-1821
-
-
Li, Y.1
Chen, Y.Q.2
Podlubny, I.3
-
29
-
-
43949166788
-
A practical method for calculating largest Lyapunov exponents from small data sets
-
Rosenstein MT, Collins JJ and De Luca CJ. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 1993; 65: 117-134.
-
(1993)
Physica D
, vol.65
, pp. 117-134
-
-
Rosenstein, M.T.1
Collins, J.J.2
De Luca, C.J.3
-
30
-
-
19044380601
-
Control of chaos: Methods and applications in engineering
-
Fradkov AL and Evans RJ. Control of chaos: methods and applications in engineering. Annu Rev Control 2005; 29: 33-56.
-
(2005)
Annu Rev Control
, vol.29
, pp. 33-56
-
-
Fradkov, A.L.1
Evans, R.J.2
-
31
-
-
0001795716
-
Absolute stability theory and the synchronization problem
-
Curran PF and Chua LO. Absolute stability theory and the synchronization problem. Int J Bifurcat Chaos 1997; 7: 1357-1382.
-
(1997)
Int J Bifurcat Chaos
, vol.7
, pp. 1357-1382
-
-
Curran, P.F.1
Chua, L.O.2
-
34
-
-
0036650479
-
A predictor- corrector approach for the numerical solution of fractional differential equations
-
Diethelm K, Ford NJ and Freed AD. A predictor- corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynam 2002; 29: 3-22.
-
(2002)
Nonlinear Dynam
, vol.29
, pp. 3-22
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
|