메뉴 건너뛰기




Volumn 23, Issue 10, 2013, Pages 484-492

Metabolism in physiological cell proliferation and differentiation

Author keywords

Epigenetics; Glycolysis; Hypoxia; Metabolites; Stem cells; Warburg effect

Indexed keywords

5 HYDROXYMETHYLCYTOSINE; 5 METHYLCYTOSINE; ACETYL COENZYME A; ADENOSINE TRIPHOSPHATE; ADENOSINE TRIPHOSPHATE CITRATE LYASE; BETA CATENIN; BUTYRIC ACID; CYCLIN D1; CYTOPLASM PROTEIN; GLUCOSE 6 PHOSPHATE DEHYDROGENASE; GLYCINE; HEXOSAMINE; HISTONE DEACETYLASE; HYPOXIA INDUCIBLE FACTOR; ISOCITRATE DEHYDROGENASE 1; ISOCITRATE DEHYDROGENASE 2; METHYL GROUP; MITOGEN ACTIVATED PROTEIN KINASE; MYC PROTEIN; PHOSPHATIDYLINOSITOL 3 KINASE; REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE OXIDASE; S ADENOSYLMETHIONINE; SERINE; SIRTUIN; SONIC HEDGEHOG PROTEIN; STEROL REGULATORY ELEMENT BINDING PROTEIN; THREONINE; TRANSCRIPTION FACTOR MASH1;

EID: 84884417502     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2013.05.004     Document Type: Review
Times cited : (181)

References (101)
  • 1
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
    • Lunt S.Y., Vander Heiden M.G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 2011, 27:441-464.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 2
    • 84858604270 scopus 로고    scopus 로고
    • Metabolic reprogramming: a cancer hallmark Even Warburg did not anticipate
    • Ward P.S., Thompson C.B. Metabolic reprogramming: a cancer hallmark Even Warburg did not anticipate. Cancer Cell 2012, 21:297-308.
    • (2012) Cancer Cell , vol.21 , pp. 297-308
    • Ward, P.S.1    Thompson, C.B.2
  • 3
    • 37449024702 scopus 로고    scopus 로고
    • The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
    • DeBerardinis R.J., et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7:11-20.
    • (2008) Cell Metab. , vol.7 , pp. 11-20
    • DeBerardinis, R.J.1
  • 4
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: the metabolic requirements of cell proliferation
    • Vander Heiden M.G., et al. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324:1029-1033.
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1
  • 5
    • 0017153683 scopus 로고
    • Aerobic glycolysis during lymphocyte proliferation
    • Wang T., et al. Aerobic glycolysis during lymphocyte proliferation. Nature 1976, 261:702-705.
    • (1976) Nature , vol.261 , pp. 702-705
    • Wang, T.1
  • 6
    • 0030945198 scopus 로고    scopus 로고
    • Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species
    • Brand K., Hermfisse U. Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J. 1997, 11:388.
    • (1997) FASEB J. , vol.11 , pp. 388
    • Brand, K.1    Hermfisse, U.2
  • 7
    • 84868351585 scopus 로고    scopus 로고
    • Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal
    • Zhang J., et al. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 2012, 11:589-595.
    • (2012) Cell Stem Cell , vol.11 , pp. 589-595
    • Zhang, J.1
  • 8
    • 84868347607 scopus 로고    scopus 로고
    • Metabolic plasticity in stem cell homeostasis and differentiation
    • Folmes C.D., et al. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 2012, 11:596-606.
    • (2012) Cell Stem Cell , vol.11 , pp. 596-606
    • Folmes, C.D.1
  • 9
    • 78649692853 scopus 로고    scopus 로고
    • On getting there from here
    • McKnight S.L. On getting there from here. Science 2010, 330:1338-1339.
    • (2010) Science , vol.330 , pp. 1338-1339
    • McKnight, S.L.1
  • 10
    • 70350220586 scopus 로고    scopus 로고
    • Mechanisms of stem cell self-renewal
    • He S., et al. Mechanisms of stem cell self-renewal. Annu. Rev. Cell Dev. Biol. 2009, 25:377-406.
    • (2009) Annu. Rev. Cell Dev. Biol. , vol.25 , pp. 377-406
    • He, S.1
  • 11
    • 24644520641 scopus 로고    scopus 로고
    • A long view of fashions in cancer research
    • Harris H. A long view of fashions in cancer research. Bioessays 2005, 27:833-838.
    • (2005) Bioessays , vol.27 , pp. 833-838
    • Harris, H.1
  • 12
    • 70349592516 scopus 로고    scopus 로고
    • The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation
    • Facucho-Oliveira J.M., St John J.C. The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev. Rep. 2009, 5:140-158.
    • (2009) Stem Cell Rev. Rep. , vol.5 , pp. 140-158
    • Facucho-Oliveira, J.M.1    St John, J.C.2
  • 13
    • 77951002352 scopus 로고    scopus 로고
    • The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells
    • Prigione A., et al. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 2010, 28:721-733.
    • (2010) Stem Cells , vol.28 , pp. 721-733
    • Prigione, A.1
  • 14
    • 83455235489 scopus 로고    scopus 로고
    • UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
    • Zhang J., et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 2011, 30:4860-4873.
    • (2011) EMBO J. , vol.30 , pp. 4860-4873
    • Zhang, J.1
  • 15
    • 33846501510 scopus 로고    scopus 로고
    • Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells
    • Chung S., et al. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat. Clin. Pract. Cardiovasc. Med. 2007, 4:S60.
    • (2007) Nat. Clin. Pract. Cardiovasc. Med. , vol.4
    • Chung, S.1
  • 16
    • 79960945131 scopus 로고    scopus 로고
    • Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming
    • Folmes C.D., et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 2011, 14:264-271.
    • (2011) Cell Metab. , vol.14 , pp. 264-271
    • Folmes, C.D.1
  • 17
    • 84855490988 scopus 로고    scopus 로고
    • The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming
    • Panopoulos A.D., et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 2012, 22:168-177.
    • (2012) Cell Res. , vol.22 , pp. 168-177
    • Panopoulos, A.D.1
  • 18
    • 79551521189 scopus 로고    scopus 로고
    • A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells
    • Birket M.J., et al. A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. J. Cell Sci. 2011, 124:348-358.
    • (2011) J. Cell Sci. , vol.124 , pp. 348-358
    • Birket, M.J.1
  • 19
    • 84860531487 scopus 로고    scopus 로고
    • HIF1alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition
    • Zhou W., et al. HIF1alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J. 2012, 31:2103-2116.
    • (2012) EMBO J. , vol.31 , pp. 2103-2116
    • Zhou, W.1
  • 20
    • 84862016091 scopus 로고    scopus 로고
    • Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo
    • Marin-Valencia I., et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 2012, 15:827-837.
    • (2012) Cell Metab. , vol.15 , pp. 827-837
    • Marin-Valencia, I.1
  • 21
    • 84864870977 scopus 로고    scopus 로고
    • Metabolic differentiation in the embryonic retina
    • Agathocleous M., et al. Metabolic differentiation in the embryonic retina. Nat. Cell Biol. 2012, 14:859-864.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 859-864
    • Agathocleous, M.1
  • 22
    • 84864876566 scopus 로고    scopus 로고
    • Seeing the Warburg effect in the developing retina
    • Fiske B.P., Vander Heiden M.G. Seeing the Warburg effect in the developing retina. Nat. Cell Biol. 2012, 14:790-791.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 790-791
    • Fiske, B.P.1    Vander Heiden, M.G.2
  • 23
    • 68549104117 scopus 로고    scopus 로고
    • The role of oxygen in regulating neural stem cells in development and disease
    • Panchision D.M. The role of oxygen in regulating neural stem cells in development and disease. J. Cell. Physiol. 2009, 220:562-568.
    • (2009) J. Cell. Physiol. , vol.220 , pp. 562-568
    • Panchision, D.M.1
  • 24
    • 21244463426 scopus 로고    scopus 로고
    • SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells
    • Kiel M.J., et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005, 121:1109-1121.
    • (2005) Cell , vol.121 , pp. 1109-1121
    • Kiel, M.J.1
  • 25
    • 34248359065 scopus 로고    scopus 로고
    • Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia
    • Parmar K., et al. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl. Acad. Sci U.S.A. 2007, 104:5431-5436.
    • (2007) Proc. Natl. Acad. Sci U.S.A. , vol.104 , pp. 5431-5436
    • Parmar, K.1
  • 26
    • 84877575509 scopus 로고    scopus 로고
    • Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment
    • Nombela-Arrieta C., et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat. Cell Biol. 2013, 15:533-543.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 533-543
    • Nombela-Arrieta, C.1
  • 27
    • 77957584397 scopus 로고    scopus 로고
    • 2 regulates stem cells through Wnt/beta-catenin signalling
    • 2 regulates stem cells through Wnt/beta-catenin signalling. Nat. Cell Biol. 2010, 12:1007-1013.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 1007-1013
    • Mazumdar, J.1
  • 28
    • 50849102656 scopus 로고    scopus 로고
    • A specialized vascular niche for adult neural stem cells
    • Tavazoie M., et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 2008, 3:279-288.
    • (2008) Cell Stem Cell , vol.3 , pp. 279-288
    • Tavazoie, M.1
  • 29
    • 50849142558 scopus 로고    scopus 로고
    • Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions
    • Shen Q., et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 2008, 3:289-300.
    • (2008) Cell Stem Cell , vol.3 , pp. 289-300
    • Shen, Q.1
  • 30
    • 77749254890 scopus 로고    scopus 로고
    • Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation
    • Ozbudak E.M., et al. Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:4224-4229.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 4224-4229
    • Ozbudak, E.M.1
  • 31
    • 77955980416 scopus 로고    scopus 로고
    • Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation
    • Lopaschuk G.D., Jaswal J.S. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J. Cardiovasc. Pharmacol. 2010, 56:130-140.
    • (2010) J. Cardiovasc. Pharmacol. , vol.56 , pp. 130-140
    • Lopaschuk, G.D.1    Jaswal, J.S.2
  • 32
    • 84859954603 scopus 로고    scopus 로고
    • Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair
    • Jung H., et al. Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat. Rev. Neurosci. 2012, 13:308-324.
    • (2012) Nat. Rev. Neurosci. , vol.13 , pp. 308-324
    • Jung, H.1
  • 33
    • 60849117793 scopus 로고    scopus 로고
    • Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis
    • Gregorian C., et al. Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis. J. Neurosci. 2009, 29:1874-1886.
    • (2009) J. Neurosci. , vol.29 , pp. 1874-1886
    • Gregorian, C.1
  • 34
    • 33646376411 scopus 로고    scopus 로고
    • Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells
    • Yilmaz O.H., et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006, 441:475-482.
    • (2006) Nature , vol.441 , pp. 475-482
    • Yilmaz, O.H.1
  • 35
    • 53349091768 scopus 로고    scopus 로고
    • TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species
    • Chen C., et al. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med. 2008, 205:2397-2408.
    • (2008) J. Exp. Med. , vol.205 , pp. 2397-2408
    • Chen, C.1
  • 36
    • 5344224052 scopus 로고    scopus 로고
    • Temporal control of differentiation by the insulin receptor/tor pathway in Drosophila
    • Bateman J.M., McNeill H. Temporal control of differentiation by the insulin receptor/tor pathway in Drosophila. Cell 2004, 119:87-96.
    • (2004) Cell , vol.119 , pp. 87-96
    • Bateman, J.M.1    McNeill, H.2
  • 37
    • 74749106584 scopus 로고    scopus 로고
    • Initiation of neuronal differentiation requires PI3-kinase/TOR signalling in the vertebrate neural tube
    • Fishwick K.J., et al. Initiation of neuronal differentiation requires PI3-kinase/TOR signalling in the vertebrate neural tube. Dev. Biol. 2010, 338:215-225.
    • (2010) Dev. Biol. , vol.338 , pp. 215-225
    • Fishwick, K.J.1
  • 38
    • 70349331678 scopus 로고    scopus 로고
    • Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells
    • Yun J., et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 2009, 325:1555-1559.
    • (2009) Science , vol.325 , pp. 1555-1559
    • Yun, J.1
  • 39
    • 84860321700 scopus 로고    scopus 로고
    • Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
    • Ying H., et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012, 149:656-670.
    • (2012) Cell , vol.149 , pp. 656-670
    • Ying, H.1
  • 40
    • 80052511813 scopus 로고    scopus 로고
    • The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
    • Mihaylova M.M., Shaw R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 2011, 13:1016-1023.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1016-1023
    • Mihaylova, M.M.1    Shaw, R.J.2
  • 41
    • 78649811793 scopus 로고    scopus 로고
    • Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells
    • Nakada D., et al. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 2010, 468:653-658.
    • (2010) Nature , vol.468 , pp. 653-658
    • Nakada, D.1
  • 42
    • 79956308325 scopus 로고    scopus 로고
    • Mechanisms and functions of Hedgehog signalling across the metazoa
    • Ingham P.W., et al. Mechanisms and functions of Hedgehog signalling across the metazoa. Nat. Rev. Genet. 2011, 12:393-406.
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 393-406
    • Ingham, P.W.1
  • 43
    • 84867536639 scopus 로고    scopus 로고
    • Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat
    • Teperino R., et al. Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat. Cell 2012, 151:414-426.
    • (2012) Cell , vol.151 , pp. 414-426
    • Teperino, R.1
  • 44
    • 78649647814 scopus 로고    scopus 로고
    • Reprogramming of human primary somatic cells by OCT4 and chemical compounds
    • Zhu S., et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 2010, 7:651-655.
    • (2010) Cell Stem Cell , vol.7 , pp. 651-655
    • Zhu, S.1
  • 45
    • 84872576236 scopus 로고    scopus 로고
    • Metabolism of inflammation limited by AMPK and pseudo-starvation
    • O'Neill L.A.J., Hardie D.G. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 2013, 493:346-355.
    • (2013) Nature , vol.493 , pp. 346-355
    • O'Neill, L.A.J.1    Hardie, D.G.2
  • 46
    • 77954735369 scopus 로고    scopus 로고
    • Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation
    • Krawczyk C.M., et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 2010, 115:4742-4749.
    • (2010) Blood , vol.115 , pp. 4742-4749
    • Krawczyk, C.M.1
  • 47
    • 79960369458 scopus 로고    scopus 로고
    • HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells
    • Shi L.Z., et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 2011, 208:1367-1376.
    • (2011) J. Exp. Med. , vol.208 , pp. 1367-1376
    • Shi, L.Z.1
  • 48
    • 79953172571 scopus 로고    scopus 로고
    • + T cell subsets
    • + T cell subsets. J. Immunol. 2011, 186:3299-3303.
    • (2011) J. Immunol. , vol.186 , pp. 3299-3303
    • Michalek, R.D.1
  • 49
    • 80052277906 scopus 로고    scopus 로고
    • reg balance by hypoxia-inducible factor 1
    • reg balance by hypoxia-inducible factor 1. Cell 2011, 146:772-784.
    • (2011) Cell , vol.146 , pp. 772-784
    • Dang, E.V.1
  • 50
    • 84870598190 scopus 로고    scopus 로고
    • ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect
    • Yang W., et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol. 2012, 14:1295-1304.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 1295-1304
    • Yang, W.1
  • 51
    • 84871104206 scopus 로고    scopus 로고
    • Targeting of several glycolytic enzymes using RNA interference reveals aldolase affects cancer cell proliferation through a non-glycolytic mechanism
    • Lew C.R., Tolan D.R. Targeting of several glycolytic enzymes using RNA interference reveals aldolase affects cancer cell proliferation through a non-glycolytic mechanism. J. Biol. Chem. 2012, 287:42554-42563.
    • (2012) J. Biol. Chem. , vol.287 , pp. 42554-42563
    • Lew, C.R.1    Tolan, D.R.2
  • 52
    • 84870389262 scopus 로고    scopus 로고
    • The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation
    • Donohoe D.R., et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell 2012, 48:612-626.
    • (2012) Mol. Cell , vol.48 , pp. 612-626
    • Donohoe, D.R.1
  • 53
    • 77249107134 scopus 로고    scopus 로고
    • Carbon metabolism-mediated myogenic differentiation
    • Bracha A.L., et al. Carbon metabolism-mediated myogenic differentiation. Nat. Chem. Biol. 2010, 6:202-204.
    • (2010) Nat. Chem. Biol. , vol.6 , pp. 202-204
    • Bracha, A.L.1
  • 54
    • 77952545479 scopus 로고    scopus 로고
    • Metabolic oxidation regulates embryonic stem cell differentiation
    • Yanes O., et al. Metabolic oxidation regulates embryonic stem cell differentiation. Nat. Chem. Biol. 2010, 6:411-417.
    • (2010) Nat. Chem. Biol. , vol.6 , pp. 411-417
    • Yanes, O.1
  • 55
    • 79953802319 scopus 로고    scopus 로고
    • Concise review: aldehyde dehydrogenase bright stem and progenitor cell populations from normal tissues: characteristics, activities, and emerging uses in regenerative medicine
    • Balber A.E. Concise review: aldehyde dehydrogenase bright stem and progenitor cell populations from normal tissues: characteristics, activities, and emerging uses in regenerative medicine. Stem Cells 2011, 29:570-575.
    • (2011) Stem Cells , vol.29 , pp. 570-575
    • Balber, A.E.1
  • 56
    • 84866952680 scopus 로고    scopus 로고
    • Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function
    • Garaycoechea J.I., et al. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 2012, 489:571-575.
    • (2012) Nature , vol.489 , pp. 571-575
    • Garaycoechea, J.I.1
  • 57
    • 79960037006 scopus 로고    scopus 로고
    • Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice
    • Langevin F., et al. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 2011, 475:53-58.
    • (2011) Nature , vol.475 , pp. 53-58
    • Langevin, F.1
  • 58
    • 84855832566 scopus 로고    scopus 로고
    • Loss of daylight vision in retinal degeneration: are oxidative stress and metabolic dysregulation to blame?
    • Punzo C., et al. Loss of daylight vision in retinal degeneration: are oxidative stress and metabolic dysregulation to blame?. J. Biol. Chem. 2012, 287:1642-1648.
    • (2012) J. Biol. Chem. , vol.287 , pp. 1642-1648
    • Punzo, C.1
  • 59
    • 52949086786 scopus 로고    scopus 로고
    • Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle
    • Hartong D.T., et al. Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle. Nat. Genet. 2008, 40:1230-1234.
    • (2008) Nat. Genet. , vol.40 , pp. 1230-1234
    • Hartong, D.T.1
  • 60
    • 82755166890 scopus 로고    scopus 로고
    • Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses
    • Anastasiou D., et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 2011, 334:1278-1283.
    • (2011) Science , vol.334 , pp. 1278-1283
    • Anastasiou, D.1
  • 61
    • 35548936968 scopus 로고    scopus 로고
    • A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche
    • Jang Y-Y., Sharkis S.J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007, 110:3056-3063.
    • (2007) Blood , vol.110 , pp. 3056-3063
    • Jang, Y.-Y.1    Sharkis, S.J.2
  • 62
    • 34547660196 scopus 로고    scopus 로고
    • FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system
    • Tothova Z., Gilliland D.G. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 2007, 1:140-152.
    • (2007) Cell Stem Cell , vol.1 , pp. 140-152
    • Tothova, Z.1    Gilliland, D.G.2
  • 63
    • 77957551487 scopus 로고    scopus 로고
    • Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress
    • Chuikov S., et al. Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress. Nat. Cell Biol. 2010, 12:999-1006.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 999-1006
    • Chuikov, S.1
  • 64
    • 78650968492 scopus 로고    scopus 로고
    • Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner
    • Le Belle J.E., et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 2011, 8:59-71.
    • (2011) Cell Stem Cell , vol.8 , pp. 59-71
    • Le Belle, J.E.1
  • 65
    • 80755129126 scopus 로고    scopus 로고
    • The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation
    • Hom J.R., et al. The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev. Cell 2011, 21:469-478.
    • (2011) Dev. Cell , vol.21 , pp. 469-478
    • Hom, J.R.1
  • 66
    • 80053904684 scopus 로고    scopus 로고
    • Mitochondrial complex III ROS regulate adipocyte differentiation
    • Tormos K.V., et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 2011, 14:537-544.
    • (2011) Cell Metab. , vol.14 , pp. 537-544
    • Tormos, K.V.1
  • 67
    • 70349446465 scopus 로고    scopus 로고
    • Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation
    • Owusu-Ansah E., Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 2009, 461:537-541.
    • (2009) Nature , vol.461 , pp. 537-541
    • Owusu-Ansah, E.1    Banerjee, U.2
  • 68
    • 84873410016 scopus 로고    scopus 로고
    • Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration
    • Love N.R., et al. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat. Cell Biol. 2013, 15:222-228.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 222-228
    • Love, N.R.1
  • 69
    • 43049121395 scopus 로고    scopus 로고
    • Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
    • Fulco M., et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev. Cell 2008, 14:661-673.
    • (2008) Dev. Cell , vol.14 , pp. 661-673
    • Fulco, M.1
  • 70
    • 78650510609 scopus 로고    scopus 로고
    • MTOR: from growth signal integration to cancer, diabetes and ageing
    • Zoncu R., et al. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 2011, 12:21-35.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 21-35
    • Zoncu, R.1
  • 71
    • 84856739946 scopus 로고    scopus 로고
    • Hypoxia-inducible factors in physiology and medicine
    • Semenza G.L. Hypoxia-inducible factors in physiology and medicine. Cell 2012, 148:399-408.
    • (2012) Cell , vol.148 , pp. 399-408
    • Semenza, G.L.1
  • 72
    • 0036198010 scopus 로고    scopus 로고
    • Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia
    • Yun Z., et al. Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev. Cell 2002, 2:331-341.
    • (2002) Dev. Cell , vol.2 , pp. 331-341
    • Yun, Z.1
  • 73
    • 77956217067 scopus 로고    scopus 로고
    • Regulation of the HIF-1alpha level is essential for hematopoietic stem cells
    • Takubo K., et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 2010, 7:391-402.
    • (2010) Cell Stem Cell , vol.7 , pp. 391-402
    • Takubo, K.1
  • 74
    • 27644561755 scopus 로고    scopus 로고
    • Hypoxia requires notch signaling to maintain the undifferentiated cell state
    • Gustafsson M.V., et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell 2005, 9:617-628.
    • (2005) Dev. Cell , vol.9 , pp. 617-628
    • Gustafsson, M.V.1
  • 75
    • 79957933050 scopus 로고    scopus 로고
    • Interaction between Notch and Hif-alpha in development and survival of Drosophila blood cells
    • Mukherjee T., et al. Interaction between Notch and Hif-alpha in development and survival of Drosophila blood cells. Science 2011, 332:1210-1213.
    • (2011) Science , vol.332 , pp. 1210-1213
    • Mukherjee, T.1
  • 76
    • 84875755814 scopus 로고    scopus 로고
    • Influence of metabolism on epigenetics and disease
    • Kaelin W.G., McKnight S.L. Influence of metabolism on epigenetics and disease. Cell 2013, 153:56-69.
    • (2013) Cell , vol.153 , pp. 56-69
    • Kaelin, W.G.1    McKnight, S.L.2
  • 77
    • 79955960768 scopus 로고    scopus 로고
    • Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes
    • Cai L., et al. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 2011, 42:426-437.
    • (2011) Mol. Cell , vol.42 , pp. 426-437
    • Cai, L.1
  • 78
    • 84870169302 scopus 로고    scopus 로고
    • Driving the cell cycle through metabolism
    • Cai L., Tu B.P. Driving the cell cycle through metabolism. Annu. Rev. Cell Dev. Biol. 2012, 28:59-87.
    • (2012) Annu. Rev. Cell Dev. Biol. , vol.28 , pp. 59-87
    • Cai, L.1    Tu, B.P.2
  • 79
    • 66249105703 scopus 로고    scopus 로고
    • ATP-citrate lyase links cellular metabolism to histone acetylation
    • Wellen K.E., et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009, 324:1076-1080.
    • (2009) Science , vol.324 , pp. 1076-1080
    • Wellen, K.E.1
  • 80
    • 67749140110 scopus 로고    scopus 로고
    • Dependence of mouse embryonic stem cells on threonine catabolism
    • Wang J., et al. Dependence of mouse embryonic stem cells on threonine catabolism. Science 2009, 325:435-439.
    • (2009) Science , vol.325 , pp. 435-439
    • Wang, J.1
  • 81
    • 84872160110 scopus 로고    scopus 로고
    • Influence of threonine metabolism on S-adenosylmethionine and histone methylation
    • Shyh-Chang N., et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 2012, 339:222-226.
    • (2012) Science , vol.339 , pp. 222-226
    • Shyh-Chang, N.1
  • 82
    • 77952547233 scopus 로고    scopus 로고
    • Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases
    • Imai S-I., Guarente L. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol. Sci. 2010, 31:212-220.
    • (2010) Trends Pharmacol. Sci. , vol.31 , pp. 212-220
    • Imai, S.-I.1    Guarente, L.2
  • 83
    • 42349085704 scopus 로고    scopus 로고
    • Sirt1 contributes critically to the redox-dependent fate of neural progenitors
    • Prozorovski T., et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat. Cell Biol. 2008, 10:385-394.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 385-394
    • Prozorovski, T.1
  • 84
    • 55749095213 scopus 로고    scopus 로고
    • Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation
    • Hisahara S., et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:15599-15604.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 15599-15604
    • Hisahara, S.1
  • 85
    • 79955926985 scopus 로고    scopus 로고
    • Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase
    • Guarani V., et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 2011, 473:234-238.
    • (2011) Nature , vol.473 , pp. 234-238
    • Guarani, V.1
  • 86
    • 72049125350 scopus 로고    scopus 로고
    • Cancer-associated IDH1 mutations produce 2-hydroxyglutarate
    • Dang L., et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009, 462:739-744.
    • (2009) Nature , vol.462 , pp. 739-744
    • Dang, L.1
  • 87
    • 78650019179 scopus 로고    scopus 로고
    • Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation
    • Figueroa M.E., et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010, 18:553-567.
    • (2010) Cancer Cell , vol.18 , pp. 553-567
    • Figueroa, M.E.1
  • 88
    • 84865520089 scopus 로고    scopus 로고
    • IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics
    • Sasaki M., et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 2012, 488:656-659.
    • (2012) Nature , vol.488 , pp. 656-659
    • Sasaki, M.1
  • 89
    • 84877632013 scopus 로고    scopus 로고
    • An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells
    • Rohle D., et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 2013, 340:626-630.
    • (2013) Science , vol.340 , pp. 626-630
    • Rohle, D.1
  • 90
    • 79960064353 scopus 로고    scopus 로고
    • Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation
    • Moran-Crusio K., et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 2011, 20:11-24.
    • (2011) Cancer Cell , vol.20 , pp. 11-24
    • Moran-Crusio, K.1
  • 91
    • 79960062301 scopus 로고    scopus 로고
    • TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis
    • Quivoron C., et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 2011, 20:25-38.
    • (2011) Cancer Cell , vol.20 , pp. 25-38
    • Quivoron, C.1
  • 92
    • 77956189495 scopus 로고    scopus 로고
    • Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification
    • Ito S., et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010, 466:1129-1133.
    • (2010) Nature , vol.466 , pp. 1129-1133
    • Ito, S.1
  • 93
    • 84860184939 scopus 로고    scopus 로고
    • Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation
    • Hanover J.A., et al. Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat. Rev. Mol. Cell Biol. 2012, 13:312-321.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 312-321
    • Hanover, J.A.1
  • 94
    • 84872953223 scopus 로고    scopus 로고
    • TET2 promotes histone O-GlcNAcylation during gene transcription
    • Chen Q., et al. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 2012, 493:561-564.
    • (2012) Nature , vol.493 , pp. 561-564
    • Chen, Q.1
  • 95
    • 84863622379 scopus 로고    scopus 로고
    • O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network
    • Jang H., et al. O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell 2012, 11:62-74.
    • (2012) Cell Stem Cell , vol.11 , pp. 62-74
    • Jang, H.1
  • 96
    • 10344222155 scopus 로고    scopus 로고
    • How cells coordinate growth and division
    • Jorgensen P., Tyers M. How cells coordinate growth and division. Curr. Biol. 2004, 14:R1014-R1027.
    • (2004) Curr. Biol. , vol.14
    • Jorgensen, P.1    Tyers, M.2
  • 97
    • 0032568795 scopus 로고    scopus 로고
    • Coordination of growth and cell division in the Drosophila wing
    • Neufeld T.P., et al. Coordination of growth and cell division in the Drosophila wing. Cell 1998, 93:1183-1193.
    • (1998) Cell , vol.93 , pp. 1183-1193
    • Neufeld, T.P.1
  • 98
    • 0025726745 scopus 로고
    • Neuronal determination without cell division in Xenopus embryos
    • Harris W.A., Hartenstein V. Neuronal determination without cell division in Xenopus embryos. Neuron 1991, 6:499-515.
    • (1991) Neuron , vol.6 , pp. 499-515
    • Harris, W.A.1    Hartenstein, V.2
  • 99
    • 27944487902 scopus 로고    scopus 로고
    • Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes
    • Tu B.P., et al. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 2005, 310:1152-1158.
    • (2005) Science , vol.310 , pp. 1152-1158
    • Tu, B.P.1
  • 100
    • 84864748956 scopus 로고    scopus 로고
    • Fulfilling the metabolic requirements for cell proliferation
    • Moncada S., et al. Fulfilling the metabolic requirements for cell proliferation. Biochem. J. 2012, 446:1-7.
    • (2012) Biochem. J. , vol.446 , pp. 1-7
    • Moncada, S.1
  • 101
    • 39749104169 scopus 로고    scopus 로고
    • Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint
    • Owusu-Ansah E., et al. Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat. Genet. 2008, 40:356-361.
    • (2008) Nat. Genet. , vol.40 , pp. 356-361
    • Owusu-Ansah, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.