-
1
-
-
80054046029
-
Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
-
Lunt S.Y., Vander Heiden M.G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 2011, 27:441-464.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander Heiden, M.G.2
-
2
-
-
84858604270
-
Metabolic reprogramming: a cancer hallmark Even Warburg did not anticipate
-
Ward P.S., Thompson C.B. Metabolic reprogramming: a cancer hallmark Even Warburg did not anticipate. Cancer Cell 2012, 21:297-308.
-
(2012)
Cancer Cell
, vol.21
, pp. 297-308
-
-
Ward, P.S.1
Thompson, C.B.2
-
3
-
-
37449024702
-
The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis R.J., et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7:11-20.
-
(2008)
Cell Metab.
, vol.7
, pp. 11-20
-
-
DeBerardinis, R.J.1
-
4
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden M.G., et al. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324:1029-1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
-
5
-
-
0017153683
-
Aerobic glycolysis during lymphocyte proliferation
-
Wang T., et al. Aerobic glycolysis during lymphocyte proliferation. Nature 1976, 261:702-705.
-
(1976)
Nature
, vol.261
, pp. 702-705
-
-
Wang, T.1
-
6
-
-
0030945198
-
Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species
-
Brand K., Hermfisse U. Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J. 1997, 11:388.
-
(1997)
FASEB J.
, vol.11
, pp. 388
-
-
Brand, K.1
Hermfisse, U.2
-
7
-
-
84868351585
-
Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal
-
Zhang J., et al. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 2012, 11:589-595.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 589-595
-
-
Zhang, J.1
-
8
-
-
84868347607
-
Metabolic plasticity in stem cell homeostasis and differentiation
-
Folmes C.D., et al. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 2012, 11:596-606.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 596-606
-
-
Folmes, C.D.1
-
9
-
-
78649692853
-
On getting there from here
-
McKnight S.L. On getting there from here. Science 2010, 330:1338-1339.
-
(2010)
Science
, vol.330
, pp. 1338-1339
-
-
McKnight, S.L.1
-
10
-
-
70350220586
-
Mechanisms of stem cell self-renewal
-
He S., et al. Mechanisms of stem cell self-renewal. Annu. Rev. Cell Dev. Biol. 2009, 25:377-406.
-
(2009)
Annu. Rev. Cell Dev. Biol.
, vol.25
, pp. 377-406
-
-
He, S.1
-
11
-
-
24644520641
-
A long view of fashions in cancer research
-
Harris H. A long view of fashions in cancer research. Bioessays 2005, 27:833-838.
-
(2005)
Bioessays
, vol.27
, pp. 833-838
-
-
Harris, H.1
-
12
-
-
70349592516
-
The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation
-
Facucho-Oliveira J.M., St John J.C. The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev. Rep. 2009, 5:140-158.
-
(2009)
Stem Cell Rev. Rep.
, vol.5
, pp. 140-158
-
-
Facucho-Oliveira, J.M.1
St John, J.C.2
-
13
-
-
77951002352
-
The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells
-
Prigione A., et al. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 2010, 28:721-733.
-
(2010)
Stem Cells
, vol.28
, pp. 721-733
-
-
Prigione, A.1
-
14
-
-
83455235489
-
UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
-
Zhang J., et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 2011, 30:4860-4873.
-
(2011)
EMBO J.
, vol.30
, pp. 4860-4873
-
-
Zhang, J.1
-
15
-
-
33846501510
-
Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells
-
Chung S., et al. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat. Clin. Pract. Cardiovasc. Med. 2007, 4:S60.
-
(2007)
Nat. Clin. Pract. Cardiovasc. Med.
, vol.4
-
-
Chung, S.1
-
16
-
-
79960945131
-
Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming
-
Folmes C.D., et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 2011, 14:264-271.
-
(2011)
Cell Metab.
, vol.14
, pp. 264-271
-
-
Folmes, C.D.1
-
17
-
-
84855490988
-
The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming
-
Panopoulos A.D., et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 2012, 22:168-177.
-
(2012)
Cell Res.
, vol.22
, pp. 168-177
-
-
Panopoulos, A.D.1
-
18
-
-
79551521189
-
A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells
-
Birket M.J., et al. A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. J. Cell Sci. 2011, 124:348-358.
-
(2011)
J. Cell Sci.
, vol.124
, pp. 348-358
-
-
Birket, M.J.1
-
19
-
-
84860531487
-
HIF1alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition
-
Zhou W., et al. HIF1alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J. 2012, 31:2103-2116.
-
(2012)
EMBO J.
, vol.31
, pp. 2103-2116
-
-
Zhou, W.1
-
20
-
-
84862016091
-
Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo
-
Marin-Valencia I., et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 2012, 15:827-837.
-
(2012)
Cell Metab.
, vol.15
, pp. 827-837
-
-
Marin-Valencia, I.1
-
21
-
-
84864870977
-
Metabolic differentiation in the embryonic retina
-
Agathocleous M., et al. Metabolic differentiation in the embryonic retina. Nat. Cell Biol. 2012, 14:859-864.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 859-864
-
-
Agathocleous, M.1
-
22
-
-
84864876566
-
Seeing the Warburg effect in the developing retina
-
Fiske B.P., Vander Heiden M.G. Seeing the Warburg effect in the developing retina. Nat. Cell Biol. 2012, 14:790-791.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 790-791
-
-
Fiske, B.P.1
Vander Heiden, M.G.2
-
23
-
-
68549104117
-
The role of oxygen in regulating neural stem cells in development and disease
-
Panchision D.M. The role of oxygen in regulating neural stem cells in development and disease. J. Cell. Physiol. 2009, 220:562-568.
-
(2009)
J. Cell. Physiol.
, vol.220
, pp. 562-568
-
-
Panchision, D.M.1
-
24
-
-
21244463426
-
SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells
-
Kiel M.J., et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005, 121:1109-1121.
-
(2005)
Cell
, vol.121
, pp. 1109-1121
-
-
Kiel, M.J.1
-
25
-
-
34248359065
-
Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia
-
Parmar K., et al. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl. Acad. Sci U.S.A. 2007, 104:5431-5436.
-
(2007)
Proc. Natl. Acad. Sci U.S.A.
, vol.104
, pp. 5431-5436
-
-
Parmar, K.1
-
26
-
-
84877575509
-
Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment
-
Nombela-Arrieta C., et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat. Cell Biol. 2013, 15:533-543.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 533-543
-
-
Nombela-Arrieta, C.1
-
27
-
-
77957584397
-
2 regulates stem cells through Wnt/beta-catenin signalling
-
2 regulates stem cells through Wnt/beta-catenin signalling. Nat. Cell Biol. 2010, 12:1007-1013.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 1007-1013
-
-
Mazumdar, J.1
-
28
-
-
50849102656
-
A specialized vascular niche for adult neural stem cells
-
Tavazoie M., et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 2008, 3:279-288.
-
(2008)
Cell Stem Cell
, vol.3
, pp. 279-288
-
-
Tavazoie, M.1
-
29
-
-
50849142558
-
Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions
-
Shen Q., et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 2008, 3:289-300.
-
(2008)
Cell Stem Cell
, vol.3
, pp. 289-300
-
-
Shen, Q.1
-
30
-
-
77749254890
-
Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation
-
Ozbudak E.M., et al. Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:4224-4229.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 4224-4229
-
-
Ozbudak, E.M.1
-
31
-
-
77955980416
-
Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation
-
Lopaschuk G.D., Jaswal J.S. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J. Cardiovasc. Pharmacol. 2010, 56:130-140.
-
(2010)
J. Cardiovasc. Pharmacol.
, vol.56
, pp. 130-140
-
-
Lopaschuk, G.D.1
Jaswal, J.S.2
-
32
-
-
84859954603
-
Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair
-
Jung H., et al. Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat. Rev. Neurosci. 2012, 13:308-324.
-
(2012)
Nat. Rev. Neurosci.
, vol.13
, pp. 308-324
-
-
Jung, H.1
-
33
-
-
60849117793
-
Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis
-
Gregorian C., et al. Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis. J. Neurosci. 2009, 29:1874-1886.
-
(2009)
J. Neurosci.
, vol.29
, pp. 1874-1886
-
-
Gregorian, C.1
-
34
-
-
33646376411
-
Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells
-
Yilmaz O.H., et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006, 441:475-482.
-
(2006)
Nature
, vol.441
, pp. 475-482
-
-
Yilmaz, O.H.1
-
35
-
-
53349091768
-
TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species
-
Chen C., et al. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med. 2008, 205:2397-2408.
-
(2008)
J. Exp. Med.
, vol.205
, pp. 2397-2408
-
-
Chen, C.1
-
36
-
-
5344224052
-
Temporal control of differentiation by the insulin receptor/tor pathway in Drosophila
-
Bateman J.M., McNeill H. Temporal control of differentiation by the insulin receptor/tor pathway in Drosophila. Cell 2004, 119:87-96.
-
(2004)
Cell
, vol.119
, pp. 87-96
-
-
Bateman, J.M.1
McNeill, H.2
-
37
-
-
74749106584
-
Initiation of neuronal differentiation requires PI3-kinase/TOR signalling in the vertebrate neural tube
-
Fishwick K.J., et al. Initiation of neuronal differentiation requires PI3-kinase/TOR signalling in the vertebrate neural tube. Dev. Biol. 2010, 338:215-225.
-
(2010)
Dev. Biol.
, vol.338
, pp. 215-225
-
-
Fishwick, K.J.1
-
38
-
-
70349331678
-
Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells
-
Yun J., et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 2009, 325:1555-1559.
-
(2009)
Science
, vol.325
, pp. 1555-1559
-
-
Yun, J.1
-
39
-
-
84860321700
-
Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
-
Ying H., et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012, 149:656-670.
-
(2012)
Cell
, vol.149
, pp. 656-670
-
-
Ying, H.1
-
40
-
-
80052511813
-
The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
-
Mihaylova M.M., Shaw R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 2011, 13:1016-1023.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1016-1023
-
-
Mihaylova, M.M.1
Shaw, R.J.2
-
41
-
-
78649811793
-
Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells
-
Nakada D., et al. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 2010, 468:653-658.
-
(2010)
Nature
, vol.468
, pp. 653-658
-
-
Nakada, D.1
-
42
-
-
79956308325
-
Mechanisms and functions of Hedgehog signalling across the metazoa
-
Ingham P.W., et al. Mechanisms and functions of Hedgehog signalling across the metazoa. Nat. Rev. Genet. 2011, 12:393-406.
-
(2011)
Nat. Rev. Genet.
, vol.12
, pp. 393-406
-
-
Ingham, P.W.1
-
43
-
-
84867536639
-
Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat
-
Teperino R., et al. Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat. Cell 2012, 151:414-426.
-
(2012)
Cell
, vol.151
, pp. 414-426
-
-
Teperino, R.1
-
44
-
-
78649647814
-
Reprogramming of human primary somatic cells by OCT4 and chemical compounds
-
Zhu S., et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 2010, 7:651-655.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 651-655
-
-
Zhu, S.1
-
45
-
-
84872576236
-
Metabolism of inflammation limited by AMPK and pseudo-starvation
-
O'Neill L.A.J., Hardie D.G. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 2013, 493:346-355.
-
(2013)
Nature
, vol.493
, pp. 346-355
-
-
O'Neill, L.A.J.1
Hardie, D.G.2
-
46
-
-
77954735369
-
Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation
-
Krawczyk C.M., et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 2010, 115:4742-4749.
-
(2010)
Blood
, vol.115
, pp. 4742-4749
-
-
Krawczyk, C.M.1
-
47
-
-
79960369458
-
HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells
-
Shi L.Z., et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 2011, 208:1367-1376.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 1367-1376
-
-
Shi, L.Z.1
-
48
-
-
79953172571
-
+ T cell subsets
-
+ T cell subsets. J. Immunol. 2011, 186:3299-3303.
-
(2011)
J. Immunol.
, vol.186
, pp. 3299-3303
-
-
Michalek, R.D.1
-
49
-
-
80052277906
-
reg balance by hypoxia-inducible factor 1
-
reg balance by hypoxia-inducible factor 1. Cell 2011, 146:772-784.
-
(2011)
Cell
, vol.146
, pp. 772-784
-
-
Dang, E.V.1
-
50
-
-
84870598190
-
ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect
-
Yang W., et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol. 2012, 14:1295-1304.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 1295-1304
-
-
Yang, W.1
-
51
-
-
84871104206
-
Targeting of several glycolytic enzymes using RNA interference reveals aldolase affects cancer cell proliferation through a non-glycolytic mechanism
-
Lew C.R., Tolan D.R. Targeting of several glycolytic enzymes using RNA interference reveals aldolase affects cancer cell proliferation through a non-glycolytic mechanism. J. Biol. Chem. 2012, 287:42554-42563.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 42554-42563
-
-
Lew, C.R.1
Tolan, D.R.2
-
52
-
-
84870389262
-
The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation
-
Donohoe D.R., et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell 2012, 48:612-626.
-
(2012)
Mol. Cell
, vol.48
, pp. 612-626
-
-
Donohoe, D.R.1
-
53
-
-
77249107134
-
Carbon metabolism-mediated myogenic differentiation
-
Bracha A.L., et al. Carbon metabolism-mediated myogenic differentiation. Nat. Chem. Biol. 2010, 6:202-204.
-
(2010)
Nat. Chem. Biol.
, vol.6
, pp. 202-204
-
-
Bracha, A.L.1
-
54
-
-
77952545479
-
Metabolic oxidation regulates embryonic stem cell differentiation
-
Yanes O., et al. Metabolic oxidation regulates embryonic stem cell differentiation. Nat. Chem. Biol. 2010, 6:411-417.
-
(2010)
Nat. Chem. Biol.
, vol.6
, pp. 411-417
-
-
Yanes, O.1
-
55
-
-
79953802319
-
Concise review: aldehyde dehydrogenase bright stem and progenitor cell populations from normal tissues: characteristics, activities, and emerging uses in regenerative medicine
-
Balber A.E. Concise review: aldehyde dehydrogenase bright stem and progenitor cell populations from normal tissues: characteristics, activities, and emerging uses in regenerative medicine. Stem Cells 2011, 29:570-575.
-
(2011)
Stem Cells
, vol.29
, pp. 570-575
-
-
Balber, A.E.1
-
56
-
-
84866952680
-
Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function
-
Garaycoechea J.I., et al. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 2012, 489:571-575.
-
(2012)
Nature
, vol.489
, pp. 571-575
-
-
Garaycoechea, J.I.1
-
57
-
-
79960037006
-
Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice
-
Langevin F., et al. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 2011, 475:53-58.
-
(2011)
Nature
, vol.475
, pp. 53-58
-
-
Langevin, F.1
-
58
-
-
84855832566
-
Loss of daylight vision in retinal degeneration: are oxidative stress and metabolic dysregulation to blame?
-
Punzo C., et al. Loss of daylight vision in retinal degeneration: are oxidative stress and metabolic dysregulation to blame?. J. Biol. Chem. 2012, 287:1642-1648.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 1642-1648
-
-
Punzo, C.1
-
59
-
-
52949086786
-
Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle
-
Hartong D.T., et al. Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle. Nat. Genet. 2008, 40:1230-1234.
-
(2008)
Nat. Genet.
, vol.40
, pp. 1230-1234
-
-
Hartong, D.T.1
-
60
-
-
82755166890
-
Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses
-
Anastasiou D., et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 2011, 334:1278-1283.
-
(2011)
Science
, vol.334
, pp. 1278-1283
-
-
Anastasiou, D.1
-
61
-
-
35548936968
-
A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche
-
Jang Y-Y., Sharkis S.J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007, 110:3056-3063.
-
(2007)
Blood
, vol.110
, pp. 3056-3063
-
-
Jang, Y.-Y.1
Sharkis, S.J.2
-
62
-
-
34547660196
-
FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system
-
Tothova Z., Gilliland D.G. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 2007, 1:140-152.
-
(2007)
Cell Stem Cell
, vol.1
, pp. 140-152
-
-
Tothova, Z.1
Gilliland, D.G.2
-
63
-
-
77957551487
-
Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress
-
Chuikov S., et al. Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress. Nat. Cell Biol. 2010, 12:999-1006.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 999-1006
-
-
Chuikov, S.1
-
64
-
-
78650968492
-
Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner
-
Le Belle J.E., et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 2011, 8:59-71.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 59-71
-
-
Le Belle, J.E.1
-
65
-
-
80755129126
-
The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation
-
Hom J.R., et al. The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev. Cell 2011, 21:469-478.
-
(2011)
Dev. Cell
, vol.21
, pp. 469-478
-
-
Hom, J.R.1
-
66
-
-
80053904684
-
Mitochondrial complex III ROS regulate adipocyte differentiation
-
Tormos K.V., et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 2011, 14:537-544.
-
(2011)
Cell Metab.
, vol.14
, pp. 537-544
-
-
Tormos, K.V.1
-
67
-
-
70349446465
-
Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation
-
Owusu-Ansah E., Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 2009, 461:537-541.
-
(2009)
Nature
, vol.461
, pp. 537-541
-
-
Owusu-Ansah, E.1
Banerjee, U.2
-
68
-
-
84873410016
-
Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration
-
Love N.R., et al. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat. Cell Biol. 2013, 15:222-228.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 222-228
-
-
Love, N.R.1
-
69
-
-
43049121395
-
Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
-
Fulco M., et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev. Cell 2008, 14:661-673.
-
(2008)
Dev. Cell
, vol.14
, pp. 661-673
-
-
Fulco, M.1
-
70
-
-
78650510609
-
MTOR: from growth signal integration to cancer, diabetes and ageing
-
Zoncu R., et al. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 2011, 12:21-35.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 21-35
-
-
Zoncu, R.1
-
71
-
-
84856739946
-
Hypoxia-inducible factors in physiology and medicine
-
Semenza G.L. Hypoxia-inducible factors in physiology and medicine. Cell 2012, 148:399-408.
-
(2012)
Cell
, vol.148
, pp. 399-408
-
-
Semenza, G.L.1
-
72
-
-
0036198010
-
Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia
-
Yun Z., et al. Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev. Cell 2002, 2:331-341.
-
(2002)
Dev. Cell
, vol.2
, pp. 331-341
-
-
Yun, Z.1
-
73
-
-
77956217067
-
Regulation of the HIF-1alpha level is essential for hematopoietic stem cells
-
Takubo K., et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 2010, 7:391-402.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 391-402
-
-
Takubo, K.1
-
74
-
-
27644561755
-
Hypoxia requires notch signaling to maintain the undifferentiated cell state
-
Gustafsson M.V., et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell 2005, 9:617-628.
-
(2005)
Dev. Cell
, vol.9
, pp. 617-628
-
-
Gustafsson, M.V.1
-
75
-
-
79957933050
-
Interaction between Notch and Hif-alpha in development and survival of Drosophila blood cells
-
Mukherjee T., et al. Interaction between Notch and Hif-alpha in development and survival of Drosophila blood cells. Science 2011, 332:1210-1213.
-
(2011)
Science
, vol.332
, pp. 1210-1213
-
-
Mukherjee, T.1
-
76
-
-
84875755814
-
Influence of metabolism on epigenetics and disease
-
Kaelin W.G., McKnight S.L. Influence of metabolism on epigenetics and disease. Cell 2013, 153:56-69.
-
(2013)
Cell
, vol.153
, pp. 56-69
-
-
Kaelin, W.G.1
McKnight, S.L.2
-
77
-
-
79955960768
-
Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes
-
Cai L., et al. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 2011, 42:426-437.
-
(2011)
Mol. Cell
, vol.42
, pp. 426-437
-
-
Cai, L.1
-
78
-
-
84870169302
-
Driving the cell cycle through metabolism
-
Cai L., Tu B.P. Driving the cell cycle through metabolism. Annu. Rev. Cell Dev. Biol. 2012, 28:59-87.
-
(2012)
Annu. Rev. Cell Dev. Biol.
, vol.28
, pp. 59-87
-
-
Cai, L.1
Tu, B.P.2
-
79
-
-
66249105703
-
ATP-citrate lyase links cellular metabolism to histone acetylation
-
Wellen K.E., et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009, 324:1076-1080.
-
(2009)
Science
, vol.324
, pp. 1076-1080
-
-
Wellen, K.E.1
-
80
-
-
67749140110
-
Dependence of mouse embryonic stem cells on threonine catabolism
-
Wang J., et al. Dependence of mouse embryonic stem cells on threonine catabolism. Science 2009, 325:435-439.
-
(2009)
Science
, vol.325
, pp. 435-439
-
-
Wang, J.1
-
81
-
-
84872160110
-
Influence of threonine metabolism on S-adenosylmethionine and histone methylation
-
Shyh-Chang N., et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 2012, 339:222-226.
-
(2012)
Science
, vol.339
, pp. 222-226
-
-
Shyh-Chang, N.1
-
82
-
-
77952547233
-
Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases
-
Imai S-I., Guarente L. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol. Sci. 2010, 31:212-220.
-
(2010)
Trends Pharmacol. Sci.
, vol.31
, pp. 212-220
-
-
Imai, S.-I.1
Guarente, L.2
-
83
-
-
42349085704
-
Sirt1 contributes critically to the redox-dependent fate of neural progenitors
-
Prozorovski T., et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat. Cell Biol. 2008, 10:385-394.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 385-394
-
-
Prozorovski, T.1
-
84
-
-
55749095213
-
Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation
-
Hisahara S., et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:15599-15604.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 15599-15604
-
-
Hisahara, S.1
-
85
-
-
79955926985
-
Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase
-
Guarani V., et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 2011, 473:234-238.
-
(2011)
Nature
, vol.473
, pp. 234-238
-
-
Guarani, V.1
-
86
-
-
72049125350
-
Cancer-associated IDH1 mutations produce 2-hydroxyglutarate
-
Dang L., et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009, 462:739-744.
-
(2009)
Nature
, vol.462
, pp. 739-744
-
-
Dang, L.1
-
87
-
-
78650019179
-
Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation
-
Figueroa M.E., et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010, 18:553-567.
-
(2010)
Cancer Cell
, vol.18
, pp. 553-567
-
-
Figueroa, M.E.1
-
88
-
-
84865520089
-
IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics
-
Sasaki M., et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 2012, 488:656-659.
-
(2012)
Nature
, vol.488
, pp. 656-659
-
-
Sasaki, M.1
-
89
-
-
84877632013
-
An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells
-
Rohle D., et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 2013, 340:626-630.
-
(2013)
Science
, vol.340
, pp. 626-630
-
-
Rohle, D.1
-
90
-
-
79960064353
-
Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation
-
Moran-Crusio K., et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 2011, 20:11-24.
-
(2011)
Cancer Cell
, vol.20
, pp. 11-24
-
-
Moran-Crusio, K.1
-
91
-
-
79960062301
-
TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis
-
Quivoron C., et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 2011, 20:25-38.
-
(2011)
Cancer Cell
, vol.20
, pp. 25-38
-
-
Quivoron, C.1
-
92
-
-
77956189495
-
Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification
-
Ito S., et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010, 466:1129-1133.
-
(2010)
Nature
, vol.466
, pp. 1129-1133
-
-
Ito, S.1
-
93
-
-
84860184939
-
Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation
-
Hanover J.A., et al. Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat. Rev. Mol. Cell Biol. 2012, 13:312-321.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 312-321
-
-
Hanover, J.A.1
-
94
-
-
84872953223
-
TET2 promotes histone O-GlcNAcylation during gene transcription
-
Chen Q., et al. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 2012, 493:561-564.
-
(2012)
Nature
, vol.493
, pp. 561-564
-
-
Chen, Q.1
-
95
-
-
84863622379
-
O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network
-
Jang H., et al. O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell 2012, 11:62-74.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 62-74
-
-
Jang, H.1
-
96
-
-
10344222155
-
How cells coordinate growth and division
-
Jorgensen P., Tyers M. How cells coordinate growth and division. Curr. Biol. 2004, 14:R1014-R1027.
-
(2004)
Curr. Biol.
, vol.14
-
-
Jorgensen, P.1
Tyers, M.2
-
97
-
-
0032568795
-
Coordination of growth and cell division in the Drosophila wing
-
Neufeld T.P., et al. Coordination of growth and cell division in the Drosophila wing. Cell 1998, 93:1183-1193.
-
(1998)
Cell
, vol.93
, pp. 1183-1193
-
-
Neufeld, T.P.1
-
98
-
-
0025726745
-
Neuronal determination without cell division in Xenopus embryos
-
Harris W.A., Hartenstein V. Neuronal determination without cell division in Xenopus embryos. Neuron 1991, 6:499-515.
-
(1991)
Neuron
, vol.6
, pp. 499-515
-
-
Harris, W.A.1
Hartenstein, V.2
-
99
-
-
27944487902
-
Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes
-
Tu B.P., et al. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 2005, 310:1152-1158.
-
(2005)
Science
, vol.310
, pp. 1152-1158
-
-
Tu, B.P.1
-
100
-
-
84864748956
-
Fulfilling the metabolic requirements for cell proliferation
-
Moncada S., et al. Fulfilling the metabolic requirements for cell proliferation. Biochem. J. 2012, 446:1-7.
-
(2012)
Biochem. J.
, vol.446
, pp. 1-7
-
-
Moncada, S.1
-
101
-
-
39749104169
-
Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint
-
Owusu-Ansah E., et al. Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat. Genet. 2008, 40:356-361.
-
(2008)
Nat. Genet.
, vol.40
, pp. 356-361
-
-
Owusu-Ansah, E.1
|