메뉴 건너뛰기




Volumn 23, Issue 10, 2013, Pages 511-517

Anchors aweigh: Protein localization and transport mediated by transmembrane domains

Author keywords

Endomembrane system; Lipid domains; Protein sorting; Protein traffic; Transmembrane domains; Transmembrane receptors

Indexed keywords

LIPID; MEMBRANE PROTEIN;

EID: 84884411179     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2013.05.005     Document Type: Review
Times cited : (58)

References (63)
  • 1
    • 0031954925 scopus 로고    scopus 로고
    • Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms
    • Wallin E., von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 1998, 7:1029-1038.
    • (1998) Protein Sci. , vol.7 , pp. 1029-1038
    • Wallin, E.1    von Heijne, G.2
  • 2
    • 69249135065 scopus 로고    scopus 로고
    • Tickets to ride: selecting cargo for clathrin-regulated internalization
    • Traub L.M. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol. Cell Biol. 2009, 10:583-596.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 583-596
    • Traub, L.M.1
  • 3
    • 0032989348 scopus 로고    scopus 로고
    • A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: the PRED-TMR algorithm
    • Pasquier C., et al. A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: the PRED-TMR algorithm. Protein Eng. 1999, 12:381-385.
    • (1999) Protein Eng. , vol.12 , pp. 381-385
    • Pasquier, C.1
  • 4
    • 0022510143 scopus 로고
    • Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins
    • Engelman D.M., et al. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu. Rev. Biophys. Biophys. Chem. 1986, 15:321-353.
    • (1986) Annu. Rev. Biophys. Biophys. Chem. , vol.15 , pp. 321-353
    • Engelman, D.M.1
  • 5
    • 77954299061 scopus 로고    scopus 로고
    • A comprehensive comparison of transmembrane domains reveals organelle-specific properties
    • Sharpe H.J., et al. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 2010, 142:158-169.
    • (2010) Cell , vol.142 , pp. 158-169
    • Sharpe, H.J.1
  • 6
    • 0023749075 scopus 로고
    • Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins
    • Lippincott-Schwartz J., et al. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell 1988, 54:209-220.
    • (1988) Cell , vol.54 , pp. 209-220
    • Lippincott-Schwartz, J.1
  • 7
    • 0025012782 scopus 로고
    • A peptide sequence confers retention and rapid degradation in the endoplasmic reticulum
    • Bonifacino J.S., et al. A peptide sequence confers retention and rapid degradation in the endoplasmic reticulum. Science 1990, 247:79-82.
    • (1990) Science , vol.247 , pp. 79-82
    • Bonifacino, J.S.1
  • 8
    • 0030070704 scopus 로고    scopus 로고
    • Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP
    • McCracken A.A., Brodsky J.L. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 1996, 132:291-298.
    • (1996) J. Cell Biol. , vol.132 , pp. 291-298
    • McCracken, A.A.1    Brodsky, J.L.2
  • 9
    • 0025885341 scopus 로고
    • Role of potentially charged transmembrane residues in targeting proteins for retention and degradation within the endoplasmic reticulum
    • Bonifacino J.S., et al. Role of potentially charged transmembrane residues in targeting proteins for retention and degradation within the endoplasmic reticulum. EMBO J. 1991, 10:2783-2793.
    • (1991) EMBO J. , vol.10 , pp. 2783-2793
    • Bonifacino, J.S.1
  • 10
    • 0027457742 scopus 로고
    • Transmembrane domain length affects charge-mediated retention and degradation of proteins within the endoplasmic reticulum
    • Lankford S.P., et al. Transmembrane domain length affects charge-mediated retention and degradation of proteins within the endoplasmic reticulum. J. Biol. Chem. 1993, 268:4814-4820.
    • (1993) J. Biol. Chem. , vol.268 , pp. 4814-4820
    • Lankford, S.P.1
  • 11
    • 33744522161 scopus 로고    scopus 로고
    • Transport of the IgE receptor alpha-chain is controlled by a multicomponent intracellular retention signal
    • Cauvi D.M., et al. Transport of the IgE receptor alpha-chain is controlled by a multicomponent intracellular retention signal. J. Biol. Chem. 2006, 281:10448-10460.
    • (2006) J. Biol. Chem. , vol.281 , pp. 10448-10460
    • Cauvi, D.M.1
  • 12
    • 0025267885 scopus 로고
    • The sequence of the mu transmembrane segment determines the tissue specificity of the transport of immunoglobulin M to the cell surface
    • Williams G.T., et al. The sequence of the mu transmembrane segment determines the tissue specificity of the transport of immunoglobulin M to the cell surface. J. Exp. Med. 1990, 171:947-952.
    • (1990) J. Exp. Med. , vol.171 , pp. 947-952
    • Williams, G.T.1
  • 13
    • 0025114865 scopus 로고
    • Colocalized transmembrane determinants for ER degradation and subunit assembly explain the intracellular fate of TCR chains
    • Bonifacino J.S., et al. Colocalized transmembrane determinants for ER degradation and subunit assembly explain the intracellular fate of TCR chains. Cell 1990, 63:503-513.
    • (1990) Cell , vol.63 , pp. 503-513
    • Bonifacino, J.S.1
  • 14
    • 0034705381 scopus 로고    scopus 로고
    • Endoplasmic reticulum retention determinants in the transmembrane and linker domains of cytochrome P450 2C1
    • Szczesna-Skorupa E., Kemper B. Endoplasmic reticulum retention determinants in the transmembrane and linker domains of cytochrome P450 2C1. J. Biol. Chem. 2000, 275:19409-19415.
    • (2000) J. Biol. Chem. , vol.275 , pp. 19409-19415
    • Szczesna-Skorupa, E.1    Kemper, B.2
  • 15
    • 0030779039 scopus 로고    scopus 로고
    • Sorting determinants in the transmembrane domain of p24 proteins
    • Fiedler K., Rothman J.E. Sorting determinants in the transmembrane domain of p24 proteins. J. Biol. Chem. 1997, 272:24739-24742.
    • (1997) J. Biol. Chem. , vol.272 , pp. 24739-24742
    • Fiedler, K.1    Rothman, J.E.2
  • 16
    • 26244462660 scopus 로고    scopus 로고
    • Contribution of the charged residues of hepatitis C virus glycoprotein E2 transmembrane domain to the functions of the E1E2 heterodimer
    • Ciczora Y., et al. Contribution of the charged residues of hepatitis C virus glycoprotein E2 transmembrane domain to the functions of the E1E2 heterodimer. J. Gen. Virol. 2005, 86:2793-2798.
    • (2005) J. Gen. Virol. , vol.86 , pp. 2793-2798
    • Ciczora, Y.1
  • 17
    • 77950786716 scopus 로고    scopus 로고
    • The length of and nonhydrophobic residues in the transmembrane domain of dengue virus envelope protein are critical for its retention and assembly in the endoplasmic reticulum
    • Hsieh S.C., et al. The length of and nonhydrophobic residues in the transmembrane domain of dengue virus envelope protein are critical for its retention and assembly in the endoplasmic reticulum. J. Virol. 2010, 84:4782-4797.
    • (2010) J. Virol. , vol.84 , pp. 4782-4797
    • Hsieh, S.C.1
  • 18
    • 0031028166 scopus 로고    scopus 로고
    • The transmembrane domain of a carboxyl-terminal anchored protein determines localization to the endoplasmic reticulum
    • Yang M., et al. The transmembrane domain of a carboxyl-terminal anchored protein determines localization to the endoplasmic reticulum. J. Biol. Chem. 1997, 272:1970-1975.
    • (1997) J. Biol. Chem. , vol.272 , pp. 1970-1975
    • Yang, M.1
  • 19
    • 79953192555 scopus 로고    scopus 로고
    • The transmembrane domain of the molecular chaperone Cosmc directs its localization to the endoplasmic reticulum
    • Sun Q., et al. The transmembrane domain of the molecular chaperone Cosmc directs its localization to the endoplasmic reticulum. J. Biol. Chem. 2011, 286:11529-11542.
    • (2011) J. Biol. Chem. , vol.286 , pp. 11529-11542
    • Sun, Q.1
  • 20
    • 0023580390 scopus 로고
    • A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region
    • Machamer C.E., Rose J.K. A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region. J. Cell Biol. 1987, 105:1205-1214.
    • (1987) J. Cell Biol. , vol.105 , pp. 1205-1214
    • Machamer, C.E.1    Rose, J.K.2
  • 21
    • 0036889157 scopus 로고    scopus 로고
    • Characterization of the Golgi retention motif of Rift Valley fever virus G(N) glycoprotein
    • Gerrard S.R., Nichol S.T. Characterization of the Golgi retention motif of Rift Valley fever virus G(N) glycoprotein. J. Virol. 2002, 76:12200-12210.
    • (2002) J. Virol. , vol.76 , pp. 12200-12210
    • Gerrard, S.R.1    Nichol, S.T.2
  • 22
    • 52649182178 scopus 로고    scopus 로고
    • The transmembrane domain of the severe acute respiratory syndrome coronavirus ORF7b protein is necessary and sufficient for its retention in the Golgi complex
    • Schaecher S.R., et al. The transmembrane domain of the severe acute respiratory syndrome coronavirus ORF7b protein is necessary and sufficient for its retention in the Golgi complex. J. Virol. 2008, 82:9477-9491.
    • (2008) J. Virol. , vol.82 , pp. 9477-9491
    • Schaecher, S.R.1
  • 23
    • 0025990802 scopus 로고
    • Sequences within and adjacent to the transmembrane segment of alpha-2,6-sialyltransferase specify Golgi retention
    • Munro S. Sequences within and adjacent to the transmembrane segment of alpha-2,6-sialyltransferase specify Golgi retention. EMBO J. 1991, 10:3577-3588.
    • (1991) EMBO J. , vol.10 , pp. 3577-3588
    • Munro, S.1
  • 24
    • 0026776288 scopus 로고
    • The signal for Golgi retention of bovine beta 1,4-galactosyltransferase is in the transmembrane domain
    • Teasdale R.D., et al. The signal for Golgi retention of bovine beta 1,4-galactosyltransferase is in the transmembrane domain. J. Biol. Chem. 1992, 267:13113.
    • (1992) J. Biol. Chem. , vol.267 , pp. 13113
    • Teasdale, R.D.1
  • 25
    • 82255170560 scopus 로고    scopus 로고
    • The Golgi localization of GOLPH2 (GP73/GOLM1) is determined by the transmembrane and cytoplamic sequences
    • Hu L., et al. The Golgi localization of GOLPH2 (GP73/GOLM1) is determined by the transmembrane and cytoplamic sequences. PLoS ONE 2011, 6:e28207.
    • (2011) PLoS ONE , vol.6
    • Hu, L.1
  • 26
    • 0034805876 scopus 로고    scopus 로고
    • Transmembrane domain length determines intracellular membrane compartment localization of syntaxins 3, 4, and 5
    • Watson R.T., Pessin J.E. Transmembrane domain length determines intracellular membrane compartment localization of syntaxins 3, 4, and 5. Am. J. Physiol. Cell Physiol. 2001, 281:C215-C223.
    • (2001) Am. J. Physiol. Cell Physiol. , vol.281
    • Watson, R.T.1    Pessin, J.E.2
  • 27
    • 0029165107 scopus 로고
    • An investigation of the role of transmembrane domains in Golgi protein retention
    • Munro S. An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J. 1995, 14:4695-4704.
    • (1995) EMBO J. , vol.14 , pp. 4695-4704
    • Munro, S.1
  • 28
    • 0027172770 scopus 로고
    • Mutational analysis of the Golgi retention signal of bovine beta-1,4-galactosyltransferase
    • Masibay A.S., et al. Mutational analysis of the Golgi retention signal of bovine beta-1,4-galactosyltransferase. J. Biol. Chem. 1993, 268:9908-9916.
    • (1993) J. Biol. Chem. , vol.268 , pp. 9908-9916
    • Masibay, A.S.1
  • 29
    • 0037470039 scopus 로고    scopus 로고
    • Importance of Cys, Gln, and Tyr from the transmembrane domain of human alpha 3/4 fucosyltransferase III for its localization and sorting in the Golgi of baby hamster kidney cells
    • Sousa V.L., et al. Importance of Cys, Gln, and Tyr from the transmembrane domain of human alpha 3/4 fucosyltransferase III for its localization and sorting in the Golgi of baby hamster kidney cells. J. Biol. Chem. 2003, 278:7624-7629.
    • (2003) J. Biol. Chem. , vol.278 , pp. 7624-7629
    • Sousa, V.L.1
  • 30
    • 0033836385 scopus 로고    scopus 로고
    • Down-regulation of cell surface receptors is modulated by polar residues within the transmembrane domain
    • Zaliauskiene L., et al. Down-regulation of cell surface receptors is modulated by polar residues within the transmembrane domain. Mol. Biol. Cell 2000, 11:2643-2655.
    • (2000) Mol. Biol. Cell , vol.11 , pp. 2643-2655
    • Zaliauskiene, L.1
  • 31
    • 77956933268 scopus 로고    scopus 로고
    • Transmembrane domains control exclusion of membrane proteins from clathrin-coated pits
    • Mercanti V., et al. Transmembrane domains control exclusion of membrane proteins from clathrin-coated pits. J. Cell Sci. 2010, 123:3329-3335.
    • (2010) J. Cell Sci. , vol.123 , pp. 3329-3335
    • Mercanti, V.1
  • 32
    • 79960432645 scopus 로고    scopus 로고
    • Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin
    • Chia P.Z., et al. Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin. J. Cell Sci. 2011, 124:2401-2413.
    • (2011) J. Cell Sci. , vol.124 , pp. 2401-2413
    • Chia, P.Z.1
  • 33
    • 34347377736 scopus 로고    scopus 로고
    • The transmembrane domain of acid trehalase mediates ubiquitin-independent multivesicular body pathway sorting
    • Huang J., et al. The transmembrane domain of acid trehalase mediates ubiquitin-independent multivesicular body pathway sorting. Mol. Biol. Cell 2007, 18:2511-2524.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 2511-2524
    • Huang, J.1
  • 34
    • 0030945486 scopus 로고    scopus 로고
    • Transmembrane domain-dependent sorting of proteins to the ER and plasma membrane in yeast
    • Rayner J.C., Pelham H.R. Transmembrane domain-dependent sorting of proteins to the ER and plasma membrane in yeast. EMBO J. 1997, 16:1832-1841.
    • (1997) EMBO J. , vol.16 , pp. 1832-1841
    • Rayner, J.C.1    Pelham, H.R.2
  • 35
    • 0033739781 scopus 로고    scopus 로고
    • Polar transmembrane domains target proteins to the interior of the yeast vacuole
    • Reggiori F., et al. Polar transmembrane domains target proteins to the interior of the yeast vacuole. Mol. Biol. Cell 2000, 11:3737-3749.
    • (2000) Mol. Biol. Cell , vol.11 , pp. 3737-3749
    • Reggiori, F.1
  • 36
    • 0032514155 scopus 로고    scopus 로고
    • Mutations in the middle of the transmembrane domain reverse the polarity of transport of the influenza virus hemagglutinin in MDCK epithelial cells
    • Lin S., et al. Mutations in the middle of the transmembrane domain reverse the polarity of transport of the influenza virus hemagglutinin in MDCK epithelial cells. J. Cell Biol. 1998, 142:51-57.
    • (1998) J. Cell Biol. , vol.142 , pp. 51-57
    • Lin, S.1
  • 37
    • 42049097236 scopus 로고    scopus 로고
    • Transmembrane domain-dependent partitioning of membrane proteins within the endoplasmic reticulum
    • Ronchi P., et al. Transmembrane domain-dependent partitioning of membrane proteins within the endoplasmic reticulum. J. Cell Biol. 2008, 181:105-118.
    • (2008) J. Cell Biol. , vol.181 , pp. 105-118
    • Ronchi, P.1
  • 38
    • 0032509208 scopus 로고    scopus 로고
    • Targeting to the endoplasmic reticulum in yeast cells by determinants present in transmembrane domains
    • Letourneur F., Cosson P. Targeting to the endoplasmic reticulum in yeast cells by determinants present in transmembrane domains. J. Biol. Chem. 1998, 273:33273-33278.
    • (1998) J. Biol. Chem. , vol.273 , pp. 33273-33278
    • Letourneur, F.1    Cosson, P.2
  • 39
    • 0027198483 scopus 로고
    • Identification of a gene required for membrane protein retention in the early secretory pathway
    • Nishikawa S., Nakano A. Identification of a gene required for membrane protein retention in the early secretory pathway. Proc. Natl. Acad. Sci. U.S.A. 1993, 90:8179-8183.
    • (1993) Proc. Natl. Acad. Sci. U.S.A. , vol.90 , pp. 8179-8183
    • Nishikawa, S.1    Nakano, A.2
  • 40
    • 0035809932 scopus 로고    scopus 로고
    • Rer1p, a retrieval receptor for endoplasmic reticulum membrane proteins, is dynamically localized to the Golgi apparatus by coatomer
    • Sato K., et al. Rer1p, a retrieval receptor for endoplasmic reticulum membrane proteins, is dynamically localized to the Golgi apparatus by coatomer. J. Cell Biol. 2001, 152:935-944.
    • (2001) J. Cell Biol. , vol.152 , pp. 935-944
    • Sato, K.1
  • 41
    • 0035697120 scopus 로고    scopus 로고
    • Interaction of the endoplasmic reticulum alpha 1,2-mannosidase Mns1p with Rer1p using the split-ubiquitin system
    • Massaad M.J., Herscovics A. Interaction of the endoplasmic reticulum alpha 1,2-mannosidase Mns1p with Rer1p using the split-ubiquitin system. J. Cell Sci. 2001, 114:4629-4635.
    • (2001) J. Cell Sci. , vol.114 , pp. 4629-4635
    • Massaad, M.J.1    Herscovics, A.2
  • 42
    • 0141856357 scopus 로고    scopus 로고
    • Rer1p, a retrieval receptor for ER membrane proteins, recognizes transmembrane domains in multiple modes
    • Sato K., et al. Rer1p, a retrieval receptor for ER membrane proteins, recognizes transmembrane domains in multiple modes. Mol. Biol. Cell 2003, 14:3605-3616.
    • (2003) Mol. Biol. Cell , vol.14 , pp. 3605-3616
    • Sato, K.1
  • 43
    • 1542344021 scopus 로고    scopus 로고
    • Endoplasmic reticulum quality control of unassembled iron transporter depends on Rer1p-mediated retrieval from the golgi
    • Sato M., et al. Endoplasmic reticulum quality control of unassembled iron transporter depends on Rer1p-mediated retrieval from the golgi. Mol. Biol. Cell 2004, 15:1417-1424.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 1417-1424
    • Sato, M.1
  • 44
    • 84861539173 scopus 로고    scopus 로고
    • A systematic approach to pair secretory cargo receptors with their cargo suggests a mechanism for cargo selection by Erv14
    • Herzig Y., et al. A systematic approach to pair secretory cargo receptors with their cargo suggests a mechanism for cargo selection by Erv14. PLoS Biol. 2012, 10:e1001329.
    • (2012) PLoS Biol. , vol.10
    • Herzig, Y.1
  • 45
    • 64749087257 scopus 로고    scopus 로고
    • Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase
    • Sato B.K., et al. Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. Mol. Cell 2009, 34:212-222.
    • (2009) Mol. Cell , vol.34 , pp. 212-222
    • Sato, B.K.1
  • 46
    • 0036166924 scopus 로고    scopus 로고
    • A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies
    • Reggiori F., Pelham H.R. A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies. Nat. Cell Biol. 2002, 4:117-123.
    • (2002) Nat. Cell Biol. , vol.4 , pp. 117-123
    • Reggiori, F.1    Pelham, H.R.2
  • 47
    • 1942439642 scopus 로고    scopus 로고
    • Bsd2 binds the ubiquitin ligase Rsp5 and mediates the ubiquitination of transmembrane proteins
    • Hettema E.H., et al. Bsd2 binds the ubiquitin ligase Rsp5 and mediates the ubiquitination of transmembrane proteins. EMBO J. 2004, 23:1279-1288.
    • (2004) EMBO J. , vol.23 , pp. 1279-1288
    • Hettema, E.H.1
  • 48
    • 79960225411 scopus 로고    scopus 로고
    • The ESCRT pathway
    • Henne W.M., et al. The ESCRT pathway. Dev. Cell 2011, 21:77-91.
    • (2011) Dev. Cell , vol.21 , pp. 77-91
    • Henne, W.M.1
  • 49
    • 0000493962 scopus 로고
    • Isolation of highly purified fractions of plasma membrane and tonoplast from the same homogenate of soybean hypocotyls by free-flow electrophoresis
    • Sandelius A.S., et al. Isolation of highly purified fractions of plasma membrane and tonoplast from the same homogenate of soybean hypocotyls by free-flow electrophoresis. Plant Physiol. 1986, 81:177-185.
    • (1986) Plant Physiol. , vol.81 , pp. 177-185
    • Sandelius, A.S.1
  • 50
    • 80053632190 scopus 로고    scopus 로고
    • Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching
    • Kaiser H.J., et al. Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:16628-16633.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 16628-16633
    • Kaiser, H.J.1
  • 51
    • 44649172481 scopus 로고    scopus 로고
    • A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor
    • Hanson M.A., et al. A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 2008, 16:897-905.
    • (2008) Structure , vol.16 , pp. 897-905
    • Hanson, M.A.1
  • 52
    • 0025975875 scopus 로고
    • Disposition of intracellular cholesterol in human fibroblasts
    • Lange Y. Disposition of intracellular cholesterol in human fibroblasts. J. Lipid Res. 1991, 32:329-339.
    • (1991) J. Lipid Res. , vol.32 , pp. 329-339
    • Lange, Y.1
  • 53
    • 38549173564 scopus 로고    scopus 로고
    • Membrane lipids: where they are and how they behave
    • van Meer G., et al. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9:112-124.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 112-124
    • van Meer, G.1
  • 54
    • 84875844779 scopus 로고    scopus 로고
    • Ripples in the pond - using a systems approach to decipher the cellular functions of membrane microdomains
    • Inder K.L., et al. Ripples in the pond - using a systems approach to decipher the cellular functions of membrane microdomains. Mol. Biosyst. 2013, 9:330-338.
    • (2013) Mol. Biosyst. , vol.9 , pp. 330-338
    • Inder, K.L.1
  • 55
    • 84861592141 scopus 로고    scopus 로고
    • Patchwork organization of the yeast plasma membrane into numerous coexisting domains
    • Spira F., et al. Patchwork organization of the yeast plasma membrane into numerous coexisting domains. Nat. Cell Biol. 2012, 14:640-648.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 640-648
    • Spira, F.1
  • 56
    • 33749612518 scopus 로고    scopus 로고
    • Assembly of MHC class I molecules within the endoplasmic reticulum
    • Zhang Y., Williams D.B. Assembly of MHC class I molecules within the endoplasmic reticulum. Immunol. Res. 2006, 35:151-162.
    • (2006) Immunol. Res. , vol.35 , pp. 151-162
    • Zhang, Y.1    Williams, D.B.2
  • 57
    • 77955944764 scopus 로고    scopus 로고
    • Structure, mechanism and inhibition of gamma-secretase and presenilin-like proteases
    • Wolfe M.S. Structure, mechanism and inhibition of gamma-secretase and presenilin-like proteases. Biol. Chem. 2010, 391:839-847.
    • (2010) Biol. Chem. , vol.391 , pp. 839-847
    • Wolfe, M.S.1
  • 58
    • 84856946718 scopus 로고    scopus 로고
    • Transmembrane domain determinants of CD4 downregulation by HIV-1 Vpu
    • Magadan J.G., Bonifacino J.S. Transmembrane domain determinants of CD4 downregulation by HIV-1 Vpu. J. Virol. 2012, 86:757-772.
    • (2012) J. Virol. , vol.86 , pp. 757-772
    • Magadan, J.G.1    Bonifacino, J.S.2
  • 59
    • 34249981222 scopus 로고    scopus 로고
    • Determining membrane protein structures: still a challenge!
    • Lacapere J.J., et al. Determining membrane protein structures: still a challenge!. Trends Biochem. Sci. 2007, 32:259-270.
    • (2007) Trends Biochem. Sci. , vol.32 , pp. 259-270
    • Lacapere, J.J.1
  • 60
    • 79959456892 scopus 로고    scopus 로고
    • Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes
    • Barrera N.P., Robinson C.V. Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes. Annu. Rev. Biochem. 2011, 80:247-271.
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 247-271
    • Barrera, N.P.1    Robinson, C.V.2
  • 61
    • 84856213807 scopus 로고    scopus 로고
    • Molecular recognition of a single sphingolipid species by a protein's transmembrane domain
    • Contreras F.X., et al. Molecular recognition of a single sphingolipid species by a protein's transmembrane domain. Nature 2012, 481:525-529.
    • (2012) Nature , vol.481 , pp. 525-529
    • Contreras, F.X.1
  • 62
    • 84856720840 scopus 로고    scopus 로고
    • The role of lipids in VDAC oligomerization
    • Betaneli V., et al. The role of lipids in VDAC oligomerization. Biophys. J. 2012, 102:523-531.
    • (2012) Biophys. J. , vol.102 , pp. 523-531
    • Betaneli, V.1
  • 63
    • 0025940737 scopus 로고
    • A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein
    • Swift A.M., Machamer C.E. A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein. J. Cell Biol. 1991, 115:19-30.
    • (1991) J. Cell Biol. , vol.115 , pp. 19-30
    • Swift, A.M.1    Machamer, C.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.