-
1
-
-
0031954925
-
Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms
-
Wallin E., von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 1998, 7:1029-1038.
-
(1998)
Protein Sci.
, vol.7
, pp. 1029-1038
-
-
Wallin, E.1
von Heijne, G.2
-
2
-
-
69249135065
-
Tickets to ride: selecting cargo for clathrin-regulated internalization
-
Traub L.M. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol. Cell Biol. 2009, 10:583-596.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 583-596
-
-
Traub, L.M.1
-
3
-
-
0032989348
-
A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: the PRED-TMR algorithm
-
Pasquier C., et al. A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: the PRED-TMR algorithm. Protein Eng. 1999, 12:381-385.
-
(1999)
Protein Eng.
, vol.12
, pp. 381-385
-
-
Pasquier, C.1
-
4
-
-
0022510143
-
Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins
-
Engelman D.M., et al. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu. Rev. Biophys. Biophys. Chem. 1986, 15:321-353.
-
(1986)
Annu. Rev. Biophys. Biophys. Chem.
, vol.15
, pp. 321-353
-
-
Engelman, D.M.1
-
5
-
-
77954299061
-
A comprehensive comparison of transmembrane domains reveals organelle-specific properties
-
Sharpe H.J., et al. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 2010, 142:158-169.
-
(2010)
Cell
, vol.142
, pp. 158-169
-
-
Sharpe, H.J.1
-
6
-
-
0023749075
-
Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins
-
Lippincott-Schwartz J., et al. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell 1988, 54:209-220.
-
(1988)
Cell
, vol.54
, pp. 209-220
-
-
Lippincott-Schwartz, J.1
-
7
-
-
0025012782
-
A peptide sequence confers retention and rapid degradation in the endoplasmic reticulum
-
Bonifacino J.S., et al. A peptide sequence confers retention and rapid degradation in the endoplasmic reticulum. Science 1990, 247:79-82.
-
(1990)
Science
, vol.247
, pp. 79-82
-
-
Bonifacino, J.S.1
-
8
-
-
0030070704
-
Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP
-
McCracken A.A., Brodsky J.L. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 1996, 132:291-298.
-
(1996)
J. Cell Biol.
, vol.132
, pp. 291-298
-
-
McCracken, A.A.1
Brodsky, J.L.2
-
9
-
-
0025885341
-
Role of potentially charged transmembrane residues in targeting proteins for retention and degradation within the endoplasmic reticulum
-
Bonifacino J.S., et al. Role of potentially charged transmembrane residues in targeting proteins for retention and degradation within the endoplasmic reticulum. EMBO J. 1991, 10:2783-2793.
-
(1991)
EMBO J.
, vol.10
, pp. 2783-2793
-
-
Bonifacino, J.S.1
-
10
-
-
0027457742
-
Transmembrane domain length affects charge-mediated retention and degradation of proteins within the endoplasmic reticulum
-
Lankford S.P., et al. Transmembrane domain length affects charge-mediated retention and degradation of proteins within the endoplasmic reticulum. J. Biol. Chem. 1993, 268:4814-4820.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 4814-4820
-
-
Lankford, S.P.1
-
11
-
-
33744522161
-
Transport of the IgE receptor alpha-chain is controlled by a multicomponent intracellular retention signal
-
Cauvi D.M., et al. Transport of the IgE receptor alpha-chain is controlled by a multicomponent intracellular retention signal. J. Biol. Chem. 2006, 281:10448-10460.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 10448-10460
-
-
Cauvi, D.M.1
-
12
-
-
0025267885
-
The sequence of the mu transmembrane segment determines the tissue specificity of the transport of immunoglobulin M to the cell surface
-
Williams G.T., et al. The sequence of the mu transmembrane segment determines the tissue specificity of the transport of immunoglobulin M to the cell surface. J. Exp. Med. 1990, 171:947-952.
-
(1990)
J. Exp. Med.
, vol.171
, pp. 947-952
-
-
Williams, G.T.1
-
13
-
-
0025114865
-
Colocalized transmembrane determinants for ER degradation and subunit assembly explain the intracellular fate of TCR chains
-
Bonifacino J.S., et al. Colocalized transmembrane determinants for ER degradation and subunit assembly explain the intracellular fate of TCR chains. Cell 1990, 63:503-513.
-
(1990)
Cell
, vol.63
, pp. 503-513
-
-
Bonifacino, J.S.1
-
14
-
-
0034705381
-
Endoplasmic reticulum retention determinants in the transmembrane and linker domains of cytochrome P450 2C1
-
Szczesna-Skorupa E., Kemper B. Endoplasmic reticulum retention determinants in the transmembrane and linker domains of cytochrome P450 2C1. J. Biol. Chem. 2000, 275:19409-19415.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 19409-19415
-
-
Szczesna-Skorupa, E.1
Kemper, B.2
-
15
-
-
0030779039
-
Sorting determinants in the transmembrane domain of p24 proteins
-
Fiedler K., Rothman J.E. Sorting determinants in the transmembrane domain of p24 proteins. J. Biol. Chem. 1997, 272:24739-24742.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 24739-24742
-
-
Fiedler, K.1
Rothman, J.E.2
-
16
-
-
26244462660
-
Contribution of the charged residues of hepatitis C virus glycoprotein E2 transmembrane domain to the functions of the E1E2 heterodimer
-
Ciczora Y., et al. Contribution of the charged residues of hepatitis C virus glycoprotein E2 transmembrane domain to the functions of the E1E2 heterodimer. J. Gen. Virol. 2005, 86:2793-2798.
-
(2005)
J. Gen. Virol.
, vol.86
, pp. 2793-2798
-
-
Ciczora, Y.1
-
17
-
-
77950786716
-
The length of and nonhydrophobic residues in the transmembrane domain of dengue virus envelope protein are critical for its retention and assembly in the endoplasmic reticulum
-
Hsieh S.C., et al. The length of and nonhydrophobic residues in the transmembrane domain of dengue virus envelope protein are critical for its retention and assembly in the endoplasmic reticulum. J. Virol. 2010, 84:4782-4797.
-
(2010)
J. Virol.
, vol.84
, pp. 4782-4797
-
-
Hsieh, S.C.1
-
18
-
-
0031028166
-
The transmembrane domain of a carboxyl-terminal anchored protein determines localization to the endoplasmic reticulum
-
Yang M., et al. The transmembrane domain of a carboxyl-terminal anchored protein determines localization to the endoplasmic reticulum. J. Biol. Chem. 1997, 272:1970-1975.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 1970-1975
-
-
Yang, M.1
-
19
-
-
79953192555
-
The transmembrane domain of the molecular chaperone Cosmc directs its localization to the endoplasmic reticulum
-
Sun Q., et al. The transmembrane domain of the molecular chaperone Cosmc directs its localization to the endoplasmic reticulum. J. Biol. Chem. 2011, 286:11529-11542.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 11529-11542
-
-
Sun, Q.1
-
20
-
-
0023580390
-
A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region
-
Machamer C.E., Rose J.K. A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region. J. Cell Biol. 1987, 105:1205-1214.
-
(1987)
J. Cell Biol.
, vol.105
, pp. 1205-1214
-
-
Machamer, C.E.1
Rose, J.K.2
-
21
-
-
0036889157
-
Characterization of the Golgi retention motif of Rift Valley fever virus G(N) glycoprotein
-
Gerrard S.R., Nichol S.T. Characterization of the Golgi retention motif of Rift Valley fever virus G(N) glycoprotein. J. Virol. 2002, 76:12200-12210.
-
(2002)
J. Virol.
, vol.76
, pp. 12200-12210
-
-
Gerrard, S.R.1
Nichol, S.T.2
-
22
-
-
52649182178
-
The transmembrane domain of the severe acute respiratory syndrome coronavirus ORF7b protein is necessary and sufficient for its retention in the Golgi complex
-
Schaecher S.R., et al. The transmembrane domain of the severe acute respiratory syndrome coronavirus ORF7b protein is necessary and sufficient for its retention in the Golgi complex. J. Virol. 2008, 82:9477-9491.
-
(2008)
J. Virol.
, vol.82
, pp. 9477-9491
-
-
Schaecher, S.R.1
-
23
-
-
0025990802
-
Sequences within and adjacent to the transmembrane segment of alpha-2,6-sialyltransferase specify Golgi retention
-
Munro S. Sequences within and adjacent to the transmembrane segment of alpha-2,6-sialyltransferase specify Golgi retention. EMBO J. 1991, 10:3577-3588.
-
(1991)
EMBO J.
, vol.10
, pp. 3577-3588
-
-
Munro, S.1
-
24
-
-
0026776288
-
The signal for Golgi retention of bovine beta 1,4-galactosyltransferase is in the transmembrane domain
-
Teasdale R.D., et al. The signal for Golgi retention of bovine beta 1,4-galactosyltransferase is in the transmembrane domain. J. Biol. Chem. 1992, 267:13113.
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 13113
-
-
Teasdale, R.D.1
-
25
-
-
82255170560
-
The Golgi localization of GOLPH2 (GP73/GOLM1) is determined by the transmembrane and cytoplamic sequences
-
Hu L., et al. The Golgi localization of GOLPH2 (GP73/GOLM1) is determined by the transmembrane and cytoplamic sequences. PLoS ONE 2011, 6:e28207.
-
(2011)
PLoS ONE
, vol.6
-
-
Hu, L.1
-
26
-
-
0034805876
-
Transmembrane domain length determines intracellular membrane compartment localization of syntaxins 3, 4, and 5
-
Watson R.T., Pessin J.E. Transmembrane domain length determines intracellular membrane compartment localization of syntaxins 3, 4, and 5. Am. J. Physiol. Cell Physiol. 2001, 281:C215-C223.
-
(2001)
Am. J. Physiol. Cell Physiol.
, vol.281
-
-
Watson, R.T.1
Pessin, J.E.2
-
27
-
-
0029165107
-
An investigation of the role of transmembrane domains in Golgi protein retention
-
Munro S. An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J. 1995, 14:4695-4704.
-
(1995)
EMBO J.
, vol.14
, pp. 4695-4704
-
-
Munro, S.1
-
28
-
-
0027172770
-
Mutational analysis of the Golgi retention signal of bovine beta-1,4-galactosyltransferase
-
Masibay A.S., et al. Mutational analysis of the Golgi retention signal of bovine beta-1,4-galactosyltransferase. J. Biol. Chem. 1993, 268:9908-9916.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 9908-9916
-
-
Masibay, A.S.1
-
29
-
-
0037470039
-
Importance of Cys, Gln, and Tyr from the transmembrane domain of human alpha 3/4 fucosyltransferase III for its localization and sorting in the Golgi of baby hamster kidney cells
-
Sousa V.L., et al. Importance of Cys, Gln, and Tyr from the transmembrane domain of human alpha 3/4 fucosyltransferase III for its localization and sorting in the Golgi of baby hamster kidney cells. J. Biol. Chem. 2003, 278:7624-7629.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 7624-7629
-
-
Sousa, V.L.1
-
30
-
-
0033836385
-
Down-regulation of cell surface receptors is modulated by polar residues within the transmembrane domain
-
Zaliauskiene L., et al. Down-regulation of cell surface receptors is modulated by polar residues within the transmembrane domain. Mol. Biol. Cell 2000, 11:2643-2655.
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 2643-2655
-
-
Zaliauskiene, L.1
-
31
-
-
77956933268
-
Transmembrane domains control exclusion of membrane proteins from clathrin-coated pits
-
Mercanti V., et al. Transmembrane domains control exclusion of membrane proteins from clathrin-coated pits. J. Cell Sci. 2010, 123:3329-3335.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 3329-3335
-
-
Mercanti, V.1
-
32
-
-
79960432645
-
Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin
-
Chia P.Z., et al. Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin. J. Cell Sci. 2011, 124:2401-2413.
-
(2011)
J. Cell Sci.
, vol.124
, pp. 2401-2413
-
-
Chia, P.Z.1
-
33
-
-
34347377736
-
The transmembrane domain of acid trehalase mediates ubiquitin-independent multivesicular body pathway sorting
-
Huang J., et al. The transmembrane domain of acid trehalase mediates ubiquitin-independent multivesicular body pathway sorting. Mol. Biol. Cell 2007, 18:2511-2524.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 2511-2524
-
-
Huang, J.1
-
34
-
-
0030945486
-
Transmembrane domain-dependent sorting of proteins to the ER and plasma membrane in yeast
-
Rayner J.C., Pelham H.R. Transmembrane domain-dependent sorting of proteins to the ER and plasma membrane in yeast. EMBO J. 1997, 16:1832-1841.
-
(1997)
EMBO J.
, vol.16
, pp. 1832-1841
-
-
Rayner, J.C.1
Pelham, H.R.2
-
35
-
-
0033739781
-
Polar transmembrane domains target proteins to the interior of the yeast vacuole
-
Reggiori F., et al. Polar transmembrane domains target proteins to the interior of the yeast vacuole. Mol. Biol. Cell 2000, 11:3737-3749.
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 3737-3749
-
-
Reggiori, F.1
-
36
-
-
0032514155
-
Mutations in the middle of the transmembrane domain reverse the polarity of transport of the influenza virus hemagglutinin in MDCK epithelial cells
-
Lin S., et al. Mutations in the middle of the transmembrane domain reverse the polarity of transport of the influenza virus hemagglutinin in MDCK epithelial cells. J. Cell Biol. 1998, 142:51-57.
-
(1998)
J. Cell Biol.
, vol.142
, pp. 51-57
-
-
Lin, S.1
-
37
-
-
42049097236
-
Transmembrane domain-dependent partitioning of membrane proteins within the endoplasmic reticulum
-
Ronchi P., et al. Transmembrane domain-dependent partitioning of membrane proteins within the endoplasmic reticulum. J. Cell Biol. 2008, 181:105-118.
-
(2008)
J. Cell Biol.
, vol.181
, pp. 105-118
-
-
Ronchi, P.1
-
38
-
-
0032509208
-
Targeting to the endoplasmic reticulum in yeast cells by determinants present in transmembrane domains
-
Letourneur F., Cosson P. Targeting to the endoplasmic reticulum in yeast cells by determinants present in transmembrane domains. J. Biol. Chem. 1998, 273:33273-33278.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 33273-33278
-
-
Letourneur, F.1
Cosson, P.2
-
39
-
-
0027198483
-
Identification of a gene required for membrane protein retention in the early secretory pathway
-
Nishikawa S., Nakano A. Identification of a gene required for membrane protein retention in the early secretory pathway. Proc. Natl. Acad. Sci. U.S.A. 1993, 90:8179-8183.
-
(1993)
Proc. Natl. Acad. Sci. U.S.A.
, vol.90
, pp. 8179-8183
-
-
Nishikawa, S.1
Nakano, A.2
-
40
-
-
0035809932
-
Rer1p, a retrieval receptor for endoplasmic reticulum membrane proteins, is dynamically localized to the Golgi apparatus by coatomer
-
Sato K., et al. Rer1p, a retrieval receptor for endoplasmic reticulum membrane proteins, is dynamically localized to the Golgi apparatus by coatomer. J. Cell Biol. 2001, 152:935-944.
-
(2001)
J. Cell Biol.
, vol.152
, pp. 935-944
-
-
Sato, K.1
-
41
-
-
0035697120
-
Interaction of the endoplasmic reticulum alpha 1,2-mannosidase Mns1p with Rer1p using the split-ubiquitin system
-
Massaad M.J., Herscovics A. Interaction of the endoplasmic reticulum alpha 1,2-mannosidase Mns1p with Rer1p using the split-ubiquitin system. J. Cell Sci. 2001, 114:4629-4635.
-
(2001)
J. Cell Sci.
, vol.114
, pp. 4629-4635
-
-
Massaad, M.J.1
Herscovics, A.2
-
42
-
-
0141856357
-
Rer1p, a retrieval receptor for ER membrane proteins, recognizes transmembrane domains in multiple modes
-
Sato K., et al. Rer1p, a retrieval receptor for ER membrane proteins, recognizes transmembrane domains in multiple modes. Mol. Biol. Cell 2003, 14:3605-3616.
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 3605-3616
-
-
Sato, K.1
-
43
-
-
1542344021
-
Endoplasmic reticulum quality control of unassembled iron transporter depends on Rer1p-mediated retrieval from the golgi
-
Sato M., et al. Endoplasmic reticulum quality control of unassembled iron transporter depends on Rer1p-mediated retrieval from the golgi. Mol. Biol. Cell 2004, 15:1417-1424.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 1417-1424
-
-
Sato, M.1
-
44
-
-
84861539173
-
A systematic approach to pair secretory cargo receptors with their cargo suggests a mechanism for cargo selection by Erv14
-
Herzig Y., et al. A systematic approach to pair secretory cargo receptors with their cargo suggests a mechanism for cargo selection by Erv14. PLoS Biol. 2012, 10:e1001329.
-
(2012)
PLoS Biol.
, vol.10
-
-
Herzig, Y.1
-
45
-
-
64749087257
-
Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase
-
Sato B.K., et al. Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. Mol. Cell 2009, 34:212-222.
-
(2009)
Mol. Cell
, vol.34
, pp. 212-222
-
-
Sato, B.K.1
-
46
-
-
0036166924
-
A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies
-
Reggiori F., Pelham H.R. A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies. Nat. Cell Biol. 2002, 4:117-123.
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 117-123
-
-
Reggiori, F.1
Pelham, H.R.2
-
47
-
-
1942439642
-
Bsd2 binds the ubiquitin ligase Rsp5 and mediates the ubiquitination of transmembrane proteins
-
Hettema E.H., et al. Bsd2 binds the ubiquitin ligase Rsp5 and mediates the ubiquitination of transmembrane proteins. EMBO J. 2004, 23:1279-1288.
-
(2004)
EMBO J.
, vol.23
, pp. 1279-1288
-
-
Hettema, E.H.1
-
48
-
-
79960225411
-
The ESCRT pathway
-
Henne W.M., et al. The ESCRT pathway. Dev. Cell 2011, 21:77-91.
-
(2011)
Dev. Cell
, vol.21
, pp. 77-91
-
-
Henne, W.M.1
-
49
-
-
0000493962
-
Isolation of highly purified fractions of plasma membrane and tonoplast from the same homogenate of soybean hypocotyls by free-flow electrophoresis
-
Sandelius A.S., et al. Isolation of highly purified fractions of plasma membrane and tonoplast from the same homogenate of soybean hypocotyls by free-flow electrophoresis. Plant Physiol. 1986, 81:177-185.
-
(1986)
Plant Physiol.
, vol.81
, pp. 177-185
-
-
Sandelius, A.S.1
-
50
-
-
80053632190
-
Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching
-
Kaiser H.J., et al. Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:16628-16633.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 16628-16633
-
-
Kaiser, H.J.1
-
51
-
-
44649172481
-
A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor
-
Hanson M.A., et al. A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 2008, 16:897-905.
-
(2008)
Structure
, vol.16
, pp. 897-905
-
-
Hanson, M.A.1
-
52
-
-
0025975875
-
Disposition of intracellular cholesterol in human fibroblasts
-
Lange Y. Disposition of intracellular cholesterol in human fibroblasts. J. Lipid Res. 1991, 32:329-339.
-
(1991)
J. Lipid Res.
, vol.32
, pp. 329-339
-
-
Lange, Y.1
-
53
-
-
38549173564
-
Membrane lipids: where they are and how they behave
-
van Meer G., et al. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9:112-124.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 112-124
-
-
van Meer, G.1
-
54
-
-
84875844779
-
Ripples in the pond - using a systems approach to decipher the cellular functions of membrane microdomains
-
Inder K.L., et al. Ripples in the pond - using a systems approach to decipher the cellular functions of membrane microdomains. Mol. Biosyst. 2013, 9:330-338.
-
(2013)
Mol. Biosyst.
, vol.9
, pp. 330-338
-
-
Inder, K.L.1
-
55
-
-
84861592141
-
Patchwork organization of the yeast plasma membrane into numerous coexisting domains
-
Spira F., et al. Patchwork organization of the yeast plasma membrane into numerous coexisting domains. Nat. Cell Biol. 2012, 14:640-648.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 640-648
-
-
Spira, F.1
-
56
-
-
33749612518
-
Assembly of MHC class I molecules within the endoplasmic reticulum
-
Zhang Y., Williams D.B. Assembly of MHC class I molecules within the endoplasmic reticulum. Immunol. Res. 2006, 35:151-162.
-
(2006)
Immunol. Res.
, vol.35
, pp. 151-162
-
-
Zhang, Y.1
Williams, D.B.2
-
57
-
-
77955944764
-
Structure, mechanism and inhibition of gamma-secretase and presenilin-like proteases
-
Wolfe M.S. Structure, mechanism and inhibition of gamma-secretase and presenilin-like proteases. Biol. Chem. 2010, 391:839-847.
-
(2010)
Biol. Chem.
, vol.391
, pp. 839-847
-
-
Wolfe, M.S.1
-
58
-
-
84856946718
-
Transmembrane domain determinants of CD4 downregulation by HIV-1 Vpu
-
Magadan J.G., Bonifacino J.S. Transmembrane domain determinants of CD4 downregulation by HIV-1 Vpu. J. Virol. 2012, 86:757-772.
-
(2012)
J. Virol.
, vol.86
, pp. 757-772
-
-
Magadan, J.G.1
Bonifacino, J.S.2
-
59
-
-
34249981222
-
Determining membrane protein structures: still a challenge!
-
Lacapere J.J., et al. Determining membrane protein structures: still a challenge!. Trends Biochem. Sci. 2007, 32:259-270.
-
(2007)
Trends Biochem. Sci.
, vol.32
, pp. 259-270
-
-
Lacapere, J.J.1
-
60
-
-
79959456892
-
Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes
-
Barrera N.P., Robinson C.V. Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes. Annu. Rev. Biochem. 2011, 80:247-271.
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 247-271
-
-
Barrera, N.P.1
Robinson, C.V.2
-
61
-
-
84856213807
-
Molecular recognition of a single sphingolipid species by a protein's transmembrane domain
-
Contreras F.X., et al. Molecular recognition of a single sphingolipid species by a protein's transmembrane domain. Nature 2012, 481:525-529.
-
(2012)
Nature
, vol.481
, pp. 525-529
-
-
Contreras, F.X.1
-
62
-
-
84856720840
-
The role of lipids in VDAC oligomerization
-
Betaneli V., et al. The role of lipids in VDAC oligomerization. Biophys. J. 2012, 102:523-531.
-
(2012)
Biophys. J.
, vol.102
, pp. 523-531
-
-
Betaneli, V.1
-
63
-
-
0025940737
-
A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein
-
Swift A.M., Machamer C.E. A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein. J. Cell Biol. 1991, 115:19-30.
-
(1991)
J. Cell Biol.
, vol.115
, pp. 19-30
-
-
Swift, A.M.1
Machamer, C.E.2
|