-
2
-
-
0003864328
-
-
New York, NY, USA McGraw-Hill
-
Erdelyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher Transcendental Functions 1953 2 New York, NY, USA McGraw-Hill
-
(1953)
Higher Transcendental Functions
, vol.2
-
-
Erdelyi, A.1
Magnus, W.2
Oberhettinger, F.3
Tricomi, F.G.4
-
3
-
-
0040384921
-
On the closed form solution of Troesch's problem
-
MR0416046 10.1016/0021-9991(76)90026-7 ZBL0334.65062
-
Roberts S. M., Shipman J. S., On the closed form solution of Troesch's problem. Journal of Computational Physics 1976 21 3 291 304 MR0416046 10.1016/0021-9991(76)90026-7 ZBL0334.65062
-
(1976)
Journal of Computational Physics
, vol.21
, Issue.3
, pp. 291-304
-
-
Roberts, S.M.1
Shipman, J.S.2
-
4
-
-
0039684959
-
On the confinement of a plasma by magnetostatic fields
-
2-s2.0-0039684959
-
Weibel E. S., On the confinement of a plasma by magnetostatic fields. Physics of Fluids 1959 2 1 52 56 2-s2.0-0039684959
-
(1959)
Physics of Fluids
, vol.2
, Issue.1
, pp. 52-56
-
-
Weibel, E.S.1
-
5
-
-
33748116425
-
Intrinsic difficulties in the numerical solution of a boundary value problem
-
Redondo Beach, Calif, USA TRW Inc
-
Troesch B. A., Intrinsic difficulties in the numerical solution of a boundary value problem. Internal Report 1960 142 Redondo Beach, Calif, USA TRW Inc.
-
(1960)
Internal Report
, Issue.142
-
-
Troesch, B.A.1
-
6
-
-
0005338184
-
An algorithm for solving boundary value problems
-
10.1006/jcph.2000.6452 MR1752614 ZBL0959.65091
-
Deeba E., Khuri S. A., Xie S., An algorithm for solving boundary value problems. Journal of Computational Physics 2000 159 2 125 138 10.1006/jcph.2000.6452 MR1752614 ZBL0959.65091
-
(2000)
Journal of Computational Physics
, vol.159
, Issue.2
, pp. 125-138
-
-
Deeba, E.1
Khuri, S.A.2
Xie, S.3
-
7
-
-
34248395626
-
An efficient algorithm for solving Troesch's problem
-
10.1016/j.amc.2006.11.161 MR2330227 ZBL1122.65373
-
Feng X., Mei L., He G., An efficient algorithm for solving Troesch's problem. Applied Mathematics and Computation 2007 189 1 500 507 10.1016/j.amc.2006.11.161 MR2330227 ZBL1122.65373
-
(2007)
Applied Mathematics and Computation
, vol.189
, Issue.1
, pp. 500-507
-
-
Feng, X.1
Mei, L.2
He, G.3
-
8
-
-
33845753056
-
Variational iteration method for solving nonlinear boundary value problems
-
10.1016/j.amc.2006.05.138 MR2294094 ZBL1110.65068
-
Momani S., Abuasad S., Odibat Z., Variational iteration method for solving nonlinear boundary value problems. Applied Mathematics and Computation 2006 183 2 1351 1358 10.1016/j.amc.2006.05.138 MR2294094 ZBL1110.65068
-
(2006)
Applied Mathematics and Computation
, vol.183
, Issue.2
, pp. 1351-1358
-
-
Momani, S.1
Abuasad, S.2
Odibat, Z.3
-
9
-
-
28244446638
-
A numerical algorithm for solving Troesch's problem
-
10.1080/0020716022000009228 MR1983307 ZBL1022.65084
-
Khuri S. A., A numerical algorithm for solving Troesch's problem. International Journal of Computer Mathematics 2003 80 4 493 498 10.1080/0020716022000009228 MR1983307 ZBL1022.65084
-
(2003)
International Journal of Computer Mathematics
, vol.80
, Issue.4
, pp. 493-498
-
-
Khuri, S.A.1
-
10
-
-
80051583591
-
Troesch's problem: A B-spline collocation approach
-
10.1016/j.mcm.2011.04.030 MR2834597
-
Khuri S. A., Sayfy A., Troesch's problem: a B-spline collocation approach. Mathematical and Computer Modelling 2011 54 9-10 1907 1918 10.1016/j.mcm.2011.04.030 MR2834597
-
(2011)
Mathematical and Computer Modelling
, vol.54
, Issue.9-10
, pp. 1907-1918
-
-
Khuri, S.A.1
Sayfy, A.2
-
11
-
-
84863599859
-
The sinc-Galerkin method for solving Troesch's problem
-
10.1016/j.mcm.2011.11.071 MR2950862 ZBL1255.65153
-
Zarebnia M., Sajjadian M., The sinc-Galerkin method for solving Troesch's problem. Mathematical and Computer Modelling 2012 56 9-10 218 228 10.1016/j.mcm.2011.11.071 MR2950862 ZBL1255.65153
-
(2012)
Mathematical and Computer Modelling
, vol.56
, Issue.9-10
, pp. 218-228
-
-
Zarebnia, M.1
Sajjadian, M.2
-
12
-
-
37349013500
-
A new algorithm for calculating one-dimensional differential transform of nonlinear functions
-
10.1016/j.amc.2007.05.026 MR2381259 ZBL1132.65062
-
Chang S.-H., Chang I.-L., A new algorithm for calculating one-dimensional differential transform of nonlinear functions. Applied Mathematics and Computation 2008 195 2 799 805 10.1016/j.amc.2007.05.026 MR2381259 ZBL1132.65062
-
(2008)
Applied Mathematics and Computation
, vol.195
, Issue.2
, pp. 799-805
-
-
Chang, S.-H.1
Chang, I.-L.2
-
13
-
-
77955279417
-
A variational iteration method for solving Troesch's problem
-
10.1016/j.cam.2010.04.018 MR2652150 ZBL1191.65101
-
Chang S.-H., A variational iteration method for solving Troesch's problem. Journal of Computational and Applied Mathematics 2010 234 10 3043 3047 10.1016/j.cam.2010.04.018 MR2652150 ZBL1191.65101
-
(2010)
Journal of Computational and Applied Mathematics
, vol.234
, Issue.10
, pp. 3043-3047
-
-
Chang, S.-H.1
-
14
-
-
37349011714
-
On the conversion of boundary-value problems into stable initial-value problems via several invariant imbedding algorithms
-
New York, NY, USA Academic Press MR0416044 ZBL0335.65032
-
Scott M. R., Aziz A. K., On the conversion of boundary-value problems into stable initial-value problems via several invariant imbedding algorithms. Numerical Solutions of Boundary-Value Problems for Ordinary Differential Equations 1975 New York, NY, USA Academic Press 89 146 MR0416044 ZBL0335.65032
-
(1975)
Numerical Solutions of Boundary-Value Problems for Ordinary Differential Equations
, pp. 89-146
-
-
Scott, M.R.1
Aziz, A.K.2
-
15
-
-
1142306260
-
Solution of Troesch's two-point boundary value problem by a combination of techniques
-
Roberts S. M., Shipman J. S., Solution of Troesch's two-point boundary value problem by a combination of techniques. Journal of Computational Physics 1972 10 232 241
-
(1972)
Journal of Computational Physics
, vol.10
, pp. 232-241
-
-
Roberts, S.M.1
Shipman, J.S.2
-
16
-
-
84884241934
-
New explicit solutions for Troesch's boundary value problem
-
MR2475859 ZBL1191.34025
-
Bougoffa L., Al-khadhi M. A., New explicit solutions for Troesch's boundary value problem. Applied Mathematics & Information Sciences 2009 3 1 89 96 MR2475859 ZBL1191.34025
-
(2009)
Applied Mathematics & Information Sciences
, vol.3
, Issue.1
, pp. 89-96
-
-
Bougoffa, L.1
Al-Khadhi, M.A.2
-
17
-
-
77951003631
-
Application of an approximate analytical method to nonlinear Troesch's problem
-
MR2544649
-
Mirmoradi S. H., Hosseinpour I., Ghanbarpour S., Barari A., Application of an approximate analytical method to nonlinear Troesch's problem. Applied Mathematical Sciences 2009 3 29-32 1579 1585 MR2544649
-
(2009)
Applied Mathematical Sciences
, vol.3
, Issue.29-32
, pp. 1579-1585
-
-
Mirmoradi, S.H.1
Hosseinpour, I.2
Ghanbarpour, S.3
Barari, A.4
-
18
-
-
79955804712
-
An efficient analytic approach for solving two-point nonlinear boundary value problems by homotopy analysis method
-
10.1002/mma.1416 MR2828745 ZBL1226.34021
-
Hassan H. N., El-Tawil M. A., An efficient analytic approach for solving two-point nonlinear boundary value problems by homotopy analysis method. Mathematical Methods in the Applied Sciences 2011 34 8 977 989 10.1002/mma.1416 MR2828745 ZBL1226.34021
-
(2011)
Mathematical Methods in the Applied Sciences
, vol.34
, Issue.8
, pp. 977-989
-
-
Hassan, H.N.1
El-Tawil, M.A.2
-
19
-
-
80052465750
-
Solution of Troesch's problem using He's polynomials
-
MR2815720
-
Mohyud-Din S. T., Solution of Troesch's problem using He's polynomials. Revista de la Unión Matemática Argentina 2011 52 1 143 148 MR2815720
-
(2011)
Revista de la Unión Matemática Argentina
, vol.52
, Issue.1
, pp. 143-148
-
-
Mohyud-Din, S.T.1
-
21
-
-
0038521511
-
Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one-dimensional Bratu equation
-
10.1016/S0096-3003(02)00345-4 MR1981688 ZBL1025.65042
-
Boyd J. P., Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one-dimensional Bratu equation. Applied Mathematics and Computation 2003 143 2-3 189 200 10.1016/S0096-3003(02)00345-4 MR1981688 ZBL1025.65042
-
(2003)
Applied Mathematics and Computation
, vol.143
, Issue.2-3
, pp. 189-200
-
-
Boyd, J.P.1
-
23
-
-
20444478300
-
Adomian decomposition method for a reliable treatment of the Bratu-type equations
-
10.1016/j.amc.2004.06.059 MR2151056 ZBL1073.65068
-
Wazwaz A.-M., Adomian decomposition method for a reliable treatment of the Bratu-type equations. Applied Mathematics and Computation 2005 166 3 652 663 10.1016/j.amc.2004.06.059 MR2151056 ZBL1073.65068
-
(2005)
Applied Mathematics and Computation
, vol.166
, Issue.3
, pp. 652-663
-
-
Wazwaz, A.-M.1
-
24
-
-
33646364314
-
An efficient method for solving Bratu equations
-
10.1016/j.amc.2005.10.021 MR2232062 ZBL1093.65108
-
Syam M. I., Hamdan A., An efficient method for solving Bratu equations. Applied Mathematics and Computation 2006 176 2 704 713 10.1016/j.amc.2005.10.021 MR2232062 ZBL1093.65108
-
(2006)
Applied Mathematics and Computation
, vol.176
, Issue.2
, pp. 704-713
-
-
Syam, M.I.1
Hamdan, A.2
-
25
-
-
2342505312
-
Application of a Mickens finite-difference scheme to the cylindrical Bratu-Gelfand problem
-
10.1002/num.10093 MR2046520 ZBL1048.65102
-
Buckmire R., Application of a Mickens finite-difference scheme to the cylindrical Bratu-Gelfand problem. Numerical Methods for Partial Differential Equations 2004 20 3 327 337 10.1002/num.10093 MR2046520 ZBL1048.65102
-
(2004)
Numerical Methods for Partial Differential Equations
, vol.20
, Issue.3
, pp. 327-337
-
-
Buckmire, R.1
-
26
-
-
0012166933
-
Numerical continuation and the Gelfand problem
-
10.1016/S0096-3003(97)81660-8 MR1491706 ZBL0908.65094
-
McGough J. S., Numerical continuation and the Gelfand problem. Applied Mathematics and Computation 1998 89 1-3 225 239 10.1016/S0096-3003(97)81660-8 MR1491706 ZBL0908.65094
-
(1998)
Applied Mathematics and Computation
, vol.89
, Issue.1-3
, pp. 225-239
-
-
McGough, J.S.1
-
27
-
-
33745801140
-
From the fitting techniques to accurate schemes for the Liouville-Bratu-Gelfand problem
-
10.1002/num.20116 MR2230270 ZBL1099.65098
-
Mounim A. S., de Dormale B. M., From the fitting techniques to accurate schemes for the Liouville-Bratu-Gelfand problem. Numerical Methods for Partial Differential Equations 2006 22 4 761 775 10.1002/num.20116 MR2230270 ZBL1099.65098
-
(2006)
Numerical Methods for Partial Differential Equations
, vol.22
, Issue.4
, pp. 761-775
-
-
Mounim, A.S.1
De Dormale, B.M.2
-
28
-
-
25844478165
-
An analytic approach to solve multiple solutions of a strongly nonlinear problem
-
10.1016/j.amc.2004.09.066 MR2174686 ZBL1151.35354
-
Li S., Liao S.-J., An analytic approach to solve multiple solutions of a strongly nonlinear problem. Applied Mathematics and Computation 2005 169 2 854 865 10.1016/j.amc.2004.09.066 MR2174686 ZBL1151.35354
-
(2005)
Applied Mathematics and Computation
, vol.169
, Issue.2
, pp. 854-865
-
-
Li, S.1
Liao, S.-J.2
-
29
-
-
34848900880
-
A general approach to obtain series solutions of nonlinear differential equations
-
10.1111/j.1467-9590.2007.00387.x MR2358643
-
Liao S., Tan Y., A general approach to obtain series solutions of nonlinear differential equations. Studies in Applied Mathematics 2007 119 4 297 354 10.1111/j.1467-9590.2007.00387.x MR2358643
-
(2007)
Studies in Applied Mathematics
, vol.119
, Issue.4
, pp. 297-354
-
-
Liao, S.1
Tan, Y.2
-
30
-
-
0141525039
-
A new approach to Bratu's problem
-
10.1016/S0096-3003(02)00656-2 MR2007684 ZBL1032.65084
-
Khuri S. A., A new approach to Bratu's problem. Applied Mathematics and Computation 2004 147 1 131 136 10.1016/S0096-3003(02)00656-2 MR2007684 ZBL1032.65084
-
(2004)
Applied Mathematics and Computation
, vol.147
, Issue.1
, pp. 131-136
-
-
Khuri, S.A.1
-
31
-
-
77956262110
-
Non-polynomial spline method for solving Bratu's problem
-
10.1016/j.cpc.2010.08.004 MR2718373 ZBL1219.65074
-
Jalilian R., Non-polynomial spline method for solving Bratu's problem. Computer Physics Communications 2010 181 11 1868 1872 10.1016/j.cpc.2010.08.004 MR2718373 ZBL1219.65074
-
(2010)
Computer Physics Communications
, vol.181
, Issue.11
, pp. 1868-1872
-
-
Jalilian, R.1
-
32
-
-
77954636966
-
B-spline method for solving Bratu's problem
-
10.1080/00207160802545882 MR2665758 ZBL1197.65090
-
Caglar H., Caglar N., Özer M., Valarstos A., Anagnostopoulos A. N., B-spline method for solving Bratu's problem. International Journal of Computer Mathematics 2010 87 8 1885 1891 10.1080/00207160802545882 MR2665758 ZBL1197.65090
-
(2010)
International Journal of Computer Mathematics
, vol.87
, Issue.8
, pp. 1885-1891
-
-
Caglar, H.1
Caglar, N.2
Özer, M.3
Valarstos, A.4
Anagnostopoulos, A.N.5
-
33
-
-
72149102881
-
Applying differential transformation method to the one-dimensional planar Bratu problem
-
MR2378565 ZBL1152.34008
-
Abdel-Halim Hassan I. H., Ertürk V. S., Applying differential transformation method to the one-dimensional planar Bratu problem. International Journal of Contemporary Mathematical Sciences 2007 2 29-32 1493 1504 MR2378565 ZBL1152.34008
-
(2007)
International Journal of Contemporary Mathematical Sciences
, vol.2
, Issue.29-32
, pp. 1493-1504
-
-
Abdel-Halim Hassan, I.H.1
Ertürk, V.S.2
-
34
-
-
77951077365
-
Numerical solution of Bratu-type equations by the variational iteration method
-
MR2663194 ZBL1196.65120
-
Batiha B., Numerical solution of Bratu-type equations by the variational iteration method. Hacettepe Journal of Mathematics and Statistics 2010 39 1 23 29 MR2663194 ZBL1196.65120
-
(2010)
Hacettepe Journal of Mathematics and Statistics
, vol.39
, Issue.1
, pp. 23-29
-
-
Batiha, B.1
-
35
-
-
79957917942
-
The Lie-group shooting method for solving the Bratu equation
-
10.1016/j.cnsns.2011.03.033 MR2806735 ZBL1222.65067
-
Abbasbandy S., Hashemi M. S., Liu C.-S., The Lie-group shooting method for solving the Bratu equation. Communications in Nonlinear Science and Numerical Simulation 2011 16 11 4238 4249 10.1016/j.cnsns.2011.03.033 MR2806735 ZBL1222.65067
-
(2011)
Communications in Nonlinear Science and Numerical Simulation
, vol.16
, Issue.11
, pp. 4238-4249
-
-
Abbasbandy, S.1
Hashemi, M.S.2
Liu, C.-S.3
-
36
-
-
0003712264
-
-
Wavelet Toolbox, for use with Matlab, 2000
-
Misiti M., Misiti Y., Oppenheim G., -M Poggi J., Wavelets Toolbox Users Guide. The MathWorks. Wavelet Toolbox, for use with Matlab, 2000
-
Wavelets Toolbox Users Guide. The MathWorks
-
-
Misiti, M.1
Misiti, Y.2
Oppenheim, G.3
Poggi, J.-M.4
-
37
-
-
80855157357
-
A new operational matrix of derivative for Chebyshev wavelets and its applications in solving ordinary differential equations with non analytic solution
-
MR2837710 ZBL1250.65091
-
Hosseini S. Gh., Mohammadi F., A new operational matrix of derivative for Chebyshev wavelets and its applications in solving ordinary differential equations with non analytic solution. Applied Mathematical Sciences 2011 5 49-52 2537 2548 MR2837710 ZBL1250.65091
-
(2011)
Applied Mathematical Sciences
, vol.5
, Issue.49-52
, pp. 2537-2548
-
-
Hosseini, S.Gh.1
Mohammadi, F.2
-
38
-
-
0004046478
-
-
Second New York, NY, USA John Wiley & Sons Inc. Pure and Applied Mathematics MR1681462
-
Folland G. B., Real Analysis: Modern Techniques and Their Applications 1999 Second New York, NY, USA John Wiley & Sons Inc. xvi+386 Pure and Applied Mathematics MR1681462
-
(1999)
Real Analysis: Modern Techniques and Their Applications
-
-
Folland, G.B.1
-
39
-
-
0003077036
-
-
Philadelphia, Pa, USA SIAM CBMS-NSF Regional Conference Series in Applied Mathematics 10.1137/1.9781611970104 MR1162107
-
Daubechies I., Ten Lectures on Wavelets 1992 61 Philadelphia, Pa, USA SIAM xx+357 CBMS-NSF Regional Conference Series in Applied Mathematics 10.1137/1.9781611970104 MR1162107
-
(1992)
Ten Lectures on Wavelets
, vol.61
-
-
Daubechies, I.1
|