메뉴 건너뛰기




Volumn 23, Issue 1, 2013, Pages 51-74

Shrinkage estimation and selection for multiple functional regression

Author keywords

Estimation consistency; Functional linear regression; Group SCAD; Principal component analysis; Selection consistency

Indexed keywords


EID: 84884228238     PISSN: 10170405     EISSN: None     Source Type: Journal    
DOI: 10.5705/ss.2011.160     Document Type: Article
Times cited : (44)

References (36)
  • 1
    • 33847349358 scopus 로고    scopus 로고
    • Prediction in functional linear regression
    • Cai, T. T. and Hall, P. (2006). Prediction in functional linear regression. Ann. Statist. 34, 2159-2179.
    • (2006) Ann. Statist. , vol.34 , pp. 2159-2179
    • Cai, T.T.1    Hall, P.2
  • 3
    • 6444240715 scopus 로고    scopus 로고
    • Estimation in generalized linear models for functional data via penalized likelihood
    • Cardot, H. and Sarda, P. (2005). Estimation in generalized linear models for functional data via penalized likelihood. J. Multivariate Anal. 92, 24-41.
    • (2005) J. Multivariate Anal. , vol.92 , pp. 24-41
    • Cardot, H.1    Sarda, P.2
  • 4
    • 70349772326 scopus 로고    scopus 로고
    • Nonparametric prediction in measurement error models
    • Carroll, R. J., Delaigle, A. and Hall, P. (2009). Nonparametric prediction in measurement error models. J. Amer. Statist. Assoc. 104, 993-1003.
    • (2009) J. Amer. Statist. Assoc. , vol.104 , pp. 993-1003
    • Carroll, R.J.1    Delaigle, A.2    Hall, P.3
  • 5
    • 65349171811 scopus 로고    scopus 로고
    • Smoothing splines estimators for functional linear regression
    • Crambes, C., Kneip, A. and Sarda, P. (2009). Smoothing splines estimators for functional linear regression. Ann. Statist. 37, 35-72.
    • (2009) Ann. Statist. , vol.37 , pp. 35-72
    • Crambes, C.1    Kneip, A.2    Sarda, P.3
  • 6
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J. Q. and Li, R. Z. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96, 1348-1360.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.Q.1    Li, R.Z.2
  • 7
    • 24344502730 scopus 로고    scopus 로고
    • Nonconcave penalized likelihood with a diverging number of parameters
    • Fan, J. Q. and Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32, 928-961.
    • (2004) Ann. Statist. , vol.32 , pp. 928-961
    • Fan, J.Q.1    Peng, H.2
  • 8
    • 84884244245 scopus 로고    scopus 로고
    • Functional additive regression
    • Fan, Y. and James, G. (2011). Functional additive regression. Technical report http://www-bcf. usc.edu/~gareth/research/FAR.pdf.
    • (2011) Technical Report
    • Fan, Y.1    James, G.2
  • 9
    • 34548232194 scopus 로고    scopus 로고
    • Nonparametric regression on functional data: Inference and practical aspects
    • Ferraty, F., Mas, A. and Vieu, P. (2007). Nonparametric regression on functional data: Inference and practical aspects. Austral. N. Z. J. Statist. 49, 267-286.
    • (2007) Austral. N. Z. J. Statist. , vol.49 , pp. 267-286
    • Ferraty, F.1    Mas, A.2    Vieu, P.3
  • 10
    • 0036448834 scopus 로고    scopus 로고
    • The functional nonparametric model and application to spectrometric data
    • Ferraty, F. and Vieu, P. (2002). The functional nonparametric model and application to spectrometric data. Comput. Statist. 17, 545-564.
    • (2002) Comput. Statist. , vol.17 , pp. 545-564
    • Ferraty, F.1    Vieu, P.2
  • 12
    • 35348874516 scopus 로고    scopus 로고
    • Methodology and convergence rates for functional linear regression
    • Hall, P. and Horowitz, J. L. (2007). Methodology and convergence rates for functional linear regression. Ann. Statist. 35, 70-91.
    • (2007) Ann. Statist. , vol.35 , pp. 70-91
    • Hall, P.1    Horowitz, J.L.2
  • 13
    • 49949115667 scopus 로고    scopus 로고
    • Asymptotic properties of bridge estimators in sparse high-dimensional regression models
    • Huang, J., Horowitz, J. L. and Ma, S. G. (2008). Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann. Statist. 36, 587-613.
    • (2008) Ann. Statist. , vol.36 , pp. 587-613
    • Huang, J.1    Horowitz, J.L.2    Ma, S.G.3
  • 14
    • 0007195209 scopus 로고    scopus 로고
    • Nonparametric estimation of quadratic regression functionals
    • Huang, L. S. and Fan, J. Q. (1999). Nonparametric estimation of quadratic regression functionals. Bernoulli 5, 927-949.
    • (1999) Bernoulli , vol.5 , pp. 927-949
    • Huang, L.S.1    Fan, J.Q.2
  • 15
    • 0036020889 scopus 로고    scopus 로고
    • Generalized linear models with functional predictors
    • James, G. M. (2002). Generalized linear models with functional predictors. J. Roy. Statist. Soc. Ser. B 64, 411-432.
    • (2002) J. Roy. Statist. Soc. Ser. B , vol.64 , pp. 411-432
    • James, G.M.1
  • 16
    • 40549143409 scopus 로고    scopus 로고
    • Nonlinear functional models for functional responses in reproducing kernel hilbert spaces
    • Lian, H. (2007). Nonlinear functional models for functional responses in reproducing kernel hilbert spaces. Canad. J. Statist. 35, 597-606.
    • (2007) Canad. J. Statist. , vol.35 , pp. 597-606
    • Lian, H.1
  • 17
    • 70350624776 scopus 로고    scopus 로고
    • Variable selection for partially linear models with measurement errors
    • Liang, H. and Li, R. Z. (2009). Variable selection for partially linear models with measurement errors. J. Amer. Statist. Assoc. 104, 234-248.
    • (2009) J. Amer. Statist. Assoc. , vol.104 , pp. 234-248
    • Liang, H.1    Li, R.Z.2
  • 18
    • 33847350805 scopus 로고    scopus 로고
    • Component selection and smoothing in multivariate nonparametric regression
    • Lin, Y. and Zhang, H. H. (2006). Component selection and smoothing in multivariate nonparametric regression. Ann. Statist. 34, 2272-2297.
    • (2006) Ann. Statist. , vol.34 , pp. 2272-2297
    • Lin, Y.1    Zhang, H.H.2
  • 19
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • Meinshausen, N. and Buhlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34, 1436-1462.
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 20
    • 19744372814 scopus 로고    scopus 로고
    • Generalized functional linear models
    • Müller, H. G. and Stadtmüller, U. (2005). Generalized functional linear models. Ann. Statist. 33, 774-805.
    • (2005) Ann. Statist. , vol.33 , pp. 774-805
    • Müller, H.G.1    Stadtmüller, U.2
  • 21
    • 33750515938 scopus 로고    scopus 로고
    • Regression models for functional data by reproducing kernel hilbert spaces methods
    • Preda, C. (2007). Regression models for functional data by reproducing kernel hilbert spaces methods. J. Statist. Plann. Inference 137, 829-840.
    • (2007) J. Statist. Plann. Inference , vol.137 , pp. 829-840
    • Preda, C.1
  • 23
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58, 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 24
    • 0003466536 scopus 로고
    • Society for Industrial and Applied Mathematics, Philadelphia, PA
    • Wahba, G. (1990). Spline Models for Observational Data. Society for Industrial and Applied Mathematics, Philadelphia, PA.
    • (1990) Spline Models for Observational Data.
    • Wahba, G.1
  • 25
    • 35348879976 scopus 로고    scopus 로고
    • Unified lasso estimation by least squares approximation
    • Wang, H. S. and Leng, C. L. (2007). Unified lasso estimation by least squares approximation. J. Amer. Statist. Assoc. 102, 1039-1048.
    • (2007) J. Amer. Statist. Assoc. , vol.102 , pp. 1039-1048
    • Wang, H.S.1    Leng, C.L.2
  • 26
    • 66549116368 scopus 로고    scopus 로고
    • Shrinkage estimation of the varying coefficient model
    • Wang, H. S. and Xia, Y. C. (2009). Shrinkage estimation of the varying coefficient model. J. Amer. Statist. Assoc. 104, 747-757.
    • (2009) J. Amer. Statist. Assoc. , vol.104 , pp. 747-757
    • Wang, H.S.1    Xia, Y.C.2
  • 27
    • 34547840186 scopus 로고    scopus 로고
    • Group scad regression analysis for microarray time course gene expression data
    • Wang, L. F., Chen, G. and Li, H. Z. (2007). Group scad regression analysis for microarray time course gene expression data. Bioinformatics 23, 1486-1494.
    • (2007) Bioinformatics , vol.23 , pp. 1486-1494
    • Wang, L.F.1    Chen, G.2    Li, H.Z.3
  • 28
    • 70149083959 scopus 로고    scopus 로고
    • Variable selection in nonparametric varyingcoefficient models for analysis of repeated measurements
    • Wang, L. F., Li, H. Z. and Huang, J. H. Z. (2008). Variable selection in nonparametric varyingcoefficient models for analysis of repeated measurements. J. Amer. Statist. Assoc. 103, 1556-1569.
    • (2008) J. Amer. Statist. Assoc. , vol.103 , pp. 1556-1569
    • Wang, L.F.1    Li, H.Z.2    Huang, J.H.Z.3
  • 29
    • 19744369661 scopus 로고    scopus 로고
    • Functional linear regression analysis for longitudinal data
    • Yao, F., Müller, H. G. and Wang, J. L. (2005). Functional linear regression analysis for longitudinal data. Ann. Statist. 33, 2873-2903.
    • (2005) Ann. Statist. , vol.33 , pp. 2873-2903
    • Yao, F.1    Müller, H.G.2    Wang, J.L.3
  • 30
    • 78650085539 scopus 로고    scopus 로고
    • A reproducing kernel hilbert space approach to functional linear regression
    • Yuan, M. and Cai, T. T. (2010). A reproducing kernel hilbert space approach to functional linear regression. Ann. Statist. 38, 3412-3444.
    • (2010) Ann. Statist. , vol.38 , pp. 3412-3444
    • Yuan, M.1    Cai, T.T.2
  • 31
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. J. Roy. Statist. Soc. Ser. B 68, 49-67.
    • (2006) J. Roy. Statist. Soc. Ser. B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 32
    • 33746149382 scopus 로고    scopus 로고
    • Variable selection for support vector machines via smoothing spline anova
    • Zhang, H. H. (2006). Variable selection for support vector machines via smoothing spline anova. Statist. Sinica 16, 659-674.
    • (2006) Statist. Sinica , vol.16 , pp. 659-674
    • Zhang, H.H.1
  • 33
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • Zhao, P. and Yu, B. (2006). On model selection consistency of lasso. J. Mach. Learn. Res. 7, 2541-2563.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 34
    • 77952974130 scopus 로고    scopus 로고
    • A bayesian hierarchical model for classification with selection of functional predictors
    • Zhu, H., Vannucci, M. and Cox, D. (2010). A bayesian hierarchical model for classification with selection of functional predictors. Biometrics 66, 463-473.
    • (2010) Biometrics , vol.66 , pp. 463-473
    • Zhu, H.1    Vannucci, M.2    Cox, D.3
  • 35
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101, 1418-1429.
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 36
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models
    • Zou, H. and Li, R. Z. (2008). One-step sparse estimates in nonconcave penalized likelihood models. Ann. Statist. 36, 1509-1533.
    • (2008) Ann. Statist. , vol.36 , pp. 1509-1533
    • Zou, H.1    Li, R.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.