-
1
-
-
0043127765
-
The Lie group of automorphisms of a principal bundle
-
Abbati, M. C., Cirelli, R., Mania, A., Michor, P.: The Lie group of automorphisms of a principal bundle. JGP 6: 2, 215-235 (1989).
-
(1989)
Jgp
, vol.6
, Issue.2
, pp. 215-235
-
-
Abbati, M.C.1
Cirelli, R.2
Mania, A.3
Michor, P.4
-
2
-
-
79959952987
-
On differentiable vectors in Lie group representations
-
Beltiţǎ, I., Beltiţǎ, D.: On differentiable vectors in Lie group representations. J. Lie Theory 21, 771-785 (2011).
-
(2011)
J. Lie Theory
, vol.21
, pp. 771-785
-
-
Beltiţǎ, I.1
Beltiţǎ, D.2
-
3
-
-
51749109709
-
Differential geometry, Lie groups and symmetric spaces over general base fields and rings
-
Bertram, W.: Differential geometry, Lie groups and symmetric spaces over general base fields and rings. Mem. Am. Math. Soc. 192(900), x+202 pp (2008).
-
(2008)
Mem. Am. Math. Soc.
, vol.192
, Issue.900
-
-
Bertram, W.1
-
4
-
-
0002178646
-
Analytic functions in topological vector spaces
-
Bochnak, J., Siciak, J.: Analytic functions in topological vector spaces. Studia Math. 39, 77-112 (1971).
-
(1971)
Studia Math.
, vol.39
, pp. 77-112
-
-
Bochnak, J.1
Siciak, J.2
-
7
-
-
32544434375
-
Unitary representations of super Lie groups and applications to the classification and multiplet structure of super particles
-
Carmeli, C., Cassinelli, G., Toigo, A., Varadarajan, V. S.: Unitary representations of super Lie groups and applications to the classification and multiplet structure of super particles. Commun. Math. Phys. 263: 1, 217-258 (2006).
-
(2006)
Commun. Math. Phys.
, vol.263
, Issue.1
, pp. 217-258
-
-
Carmeli, C.1
Cassinelli, G.2
Toigo, A.3
Varadarajan, V.S.4
-
8
-
-
0002734990
-
Infinite-dimensional Lie groups without completeness restrictions
-
A. Strasburger, W. Wojtynski, J. Hilgert, and K.-H. Neeb (Eds.), Warsaw: Banach Center Publications
-
Glöckner, H.: Infinite-dimensional Lie groups without completeness restrictions. In: Strasburger, A., Wojtynski, W., Hilgert, J., Neeb, K.-H. (eds.) Geometry and Analysis on Finite and Infinite-dimensional Lie Groups, vol. 55, pp. 43-59. Banach Center Publications, Warsaw (2002).
-
(2002)
Geometry and Analysis on Finite and Infinite-Dimensional Lie Groups
, vol.55
, pp. 43-59
-
-
Glöckner, H.1
-
9
-
-
33748993020
-
Fundamentals of direct limit Lie theory
-
Glöckner, H.: Fundamentals of direct limit Lie theory. Compos. Math. 141, 1551-1577 (2005).
-
(2005)
Compos. Math.
, vol.141
, pp. 1551-1577
-
-
Glöckner, H.1
-
13
-
-
84966236065
-
The inverse function theorem of Nash and Moser
-
Hamilton, R.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. 7, 65-222 (1982).
-
(1982)
Bull. Am. Math. Soc.
, vol.7
, pp. 65-222
-
-
Hamilton, R.1
-
15
-
-
78650555643
-
Integrating representations of Banach-Lie algebras
-
Merigon, S.: Integrating representations of Banach-Lie algebras. J. Funct. Anal. 260: 5, 1463-1475 (2011).
-
(2011)
J. Funct. Anal.
, vol.260
, Issue.5
, pp. 1463-1475
-
-
Merigon, S.1
-
16
-
-
84866542229
-
Categories of unitary representations of Banach-Lie supergroups and restriction functors
-
Merigon, S., Neeb, K.-H., Salmasian, H.: Categories of unitary representations of Banach-Lie supergroups and restriction functors. Pac. J. Math. 257(2), 431-469 (2012).
-
(2012)
Pac. J. Math.
, vol.257
, Issue.2
, pp. 431-469
-
-
Merigon, S.1
Neeb, K.-H.2
Salmasian, H.3
-
17
-
-
0001335921
-
Remarks on infinite-dimensional Lie groups
-
B. DeWitt and R. Stora (Eds.), Amsterdam: North Holland
-
Milnor, J.: Remarks on infinite-dimensional Lie groups. In: DeWitt, B., Stora, R. (eds.) "Relativité, groupes et topologie II" (Les Houches, 1983), pp. 1007-1057. North Holland, Amsterdam (1984).
-
(1984)
Relativité, Groupes Et Topologie II (Les Houches, 1983)
, pp. 1007-1057
-
-
Milnor, J.1
-
18
-
-
33749023336
-
Towards a Lie theory of locally convex groups
-
Neeb, K.-H.: Towards a Lie theory of locally convex groups. Jpn. J. Math. 3rd Ser. 1: 2, 291-468 (2006).
-
(2006)
Jpn. J. Math. 3rd Ser.
, vol.1
, Issue.2
, pp. 291-468
-
-
Neeb, K.-H.1
-
19
-
-
77956190327
-
On differentiable vectors for representations of infinite dimensional Lie groups
-
Neeb, K.-H.: On differentiable vectors for representations of infinite dimensional Lie groups. J. Funct. Anal. 259, 2814-2855 (2010).
-
(2010)
J. Funct. Anal.
, vol.259
, pp. 2814-2855
-
-
Neeb, K.-H.1
-
20
-
-
84858984598
-
On analytic vectors for unitary representations of infinite dimensional Lie groups
-
Neeb, K.-H.: On analytic vectors for unitary representations of infinite dimensional Lie groups. Ann. Inst. Fourier 61: 5, 1441-1476 (2011).
-
(2011)
Ann. Inst. Fourier
, vol.61
, Issue.5
, pp. 1441-1476
-
-
Neeb, K.-H.1
-
24
-
-
84972540546
-
On regular Fréchet-Lie groups IV. Definition and fundamental theorems
-
Omori, H., Maeda, Y., Yoshioka, A., Kobayashi, O.: On regular Fréchet-Lie groups IV. Definition and fundamental theorems. Tokyo J. Math. 5, 365-398 (1982).
-
(1982)
Tokyo J. Math.
, vol.5
, pp. 365-398
-
-
Omori, H.1
Maeda, Y.2
Yoshioka, A.3
Kobayashi, O.4
-
25
-
-
34548016778
-
Lie group structures on symmetry groups of principal bundles
-
Chr, Wockel: Lie group structures on symmetry groups of principal bundles. J. Funct. Anal. 251: 1, 254-288 (2007).
-
(2007)
J. Funct. Anal.
, vol.251
, Issue.1
, pp. 254-288
-
-
Chr, W.1
|