메뉴 건너뛰기




Volumn 40, Issue 2, 2013, Pages 452-468

Adaptive fault diagnosis in rotating machines using indicators selection

Author keywords

Adaptive diagnosis; Condition monitoring; Indicators selection; Pattern recognition; Rotating machines

Indexed keywords

ADAPTIVE DIAGNOSIS; CONDITION MONITORING AND FAULTS DIAGNOSIS; DIAGNOSIS PERFORMANCE; EXPERIMENTAL TEST; INDUSTRIAL SYSTEMS; OPERATING CONDITION; ROTATING MACHINE; SELECTION CRITERIA;

EID: 84883891775     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2013.05.025     Document Type: Article
Times cited : (24)

References (45)
  • 1
    • 79953861150 scopus 로고    scopus 로고
    • Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection
    • M. Schlechtingen, and I. Ferreira Santos Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection Mech. Syst. Signal Process. 25 5 2011 1849 1875
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.5 , pp. 1849-1875
    • Schlechtingen, M.1    Ferreira Santos, I.2
  • 2
    • 77955582587 scopus 로고    scopus 로고
    • Natural roller bearing fault detection by angular measurement of true instantaneous angular speed
    • L. Renaudin, F. Bonnardot, O. Musy, J.B. Doray, and D. Rémond Natural roller bearing fault detection by angular measurement of true instantaneous angular speed Mech. Syst. Signal Process. 24 2010 1998 2011
    • (2010) Mech. Syst. Signal Process. , vol.24 , pp. 1998-2011
    • Renaudin, L.1    Bonnardot, F.2    Musy, O.3    Doray, J.B.4    Rémond, D.5
  • 3
    • 33749515602 scopus 로고    scopus 로고
    • A comparative experimental study on the diagnostic and prognostic capabilities of acoustics emission, vibration and spectrometric oil analysis for spur gears
    • C. Tan, P. Irving, and D. Mba A comparative experimental study on the diagnostic and prognostic capabilities of acoustics emission, vibration and spectrometric oil analysis for spur gears Mech. Syst. Signal Process. 21 2007 208 233
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 208-233
    • Tan, C.1    Irving, P.2    Mba, D.3
  • 4
    • 34047275789 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension
    • J. Yang, Y. Zhang, and Y. Zhu Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension Mech. Syst. Signal Process. 21 5 2007 2012 2024
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.5 , pp. 2012-2024
    • Yang, J.1    Zhang, Y.2    Zhu, Y.3
  • 5
    • 84883890531 scopus 로고    scopus 로고
    • Automated diagnosis of rolling element bearing defects using time-domain features and neural networks
    • A. Srividya, A.K Verma, and B. Sreejith Automated diagnosis of rolling element bearing defects using time-domain features and neural networks Int. J. Min. Reclam. Environ. 23 3 2009 206 215
    • (2009) Int. J. Min. Reclam. Environ. , vol.23 , Issue.3 , pp. 206-215
    • Srividya, A.1    Verma, A.K.2    Sreejith, B.3
  • 6
    • 29444460051 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithm for bearing fault detection
    • B. Samanta, K.R Al-Balushi, and S.A Al-Araimi Artificial neural networks and genetic algorithm for bearing fault detection Soft Comput. 10 3 2005 264 271
    • (2005) Soft Comput. , vol.10 , Issue.3 , pp. 264-271
    • Samanta, B.1    Al-Balushi, K.R.2    Al-Araimi, S.A.3
  • 7
    • 82255174981 scopus 로고    scopus 로고
    • Early fault diagnosis of rotating machinery based on wavelet packets - Empirical mode decomposition feature extraction and neural network
    • G.F. Bin, J.J. Gao, X.J. Li, and B.S. Dhillon Early fault diagnosis of rotating machinery based on wavelet packets - empirical mode decomposition feature extraction and neural network Mecha. Syst. Signal Process. 27 2012 696 711
    • (2012) Mecha. Syst. Signal Process. , vol.27 , pp. 696-711
    • Bin, G.F.1    Gao, J.J.2    Li, X.J.3    Dhillon, B.S.4
  • 8
    • 44949230201 scopus 로고    scopus 로고
    • Investigation of engine fault diagnosis using discrete wavelet transform and neural network
    • J. Wu, and C. Liu Investigation of engine fault diagnosis using discrete wavelet transform and neural network Expert Syst. Appl. 35 3 2005 1200 1213
    • (2005) Expert Syst. Appl. , vol.35 , Issue.3 , pp. 1200-1213
    • Wu, J.1    Liu, C.2
  • 9
    • 56349099610 scopus 로고    scopus 로고
    • Fault gear identification using vibration signal with discrete wavelet transform technique and fuzzy-logic inference
    • J. Wu, and C. Hsu Fault gear identification using vibration signal with discrete wavelet transform technique and fuzzy-logic inference Expert Syst. Appl. 36 2 2009 3785 3794
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 3785-3794
    • Wu, J.1    Hsu, C.2
  • 10
    • 84864979881 scopus 로고    scopus 로고
    • A new procedure for extracting fault feature of multi-frequency signal from rotating machinery
    • X. Xiong, S. Yang, and C. Gan A new procedure for extracting fault feature of multi-frequency signal from rotating machinery Mech. Syst. Signal Process. 32 2012 306 319
    • (2012) Mech. Syst. Signal Process. , vol.32 , pp. 306-319
    • Xiong, X.1    Yang, S.2    Gan, C.3
  • 11
    • 80055015162 scopus 로고    scopus 로고
    • Dynamic wavelet-based tool for gearbox diagnosis
    • F.K. Omar, and A.M. Gaouda Dynamic wavelet-based tool for gearbox diagnosis Mech. Syst. Signal Process. 26 2012 190 204
    • (2012) Mech. Syst. Signal Process. , vol.26 , pp. 190-204
    • Omar, F.K.1    Gaouda, A.M.2
  • 12
    • 34247382054 scopus 로고    scopus 로고
    • An analysis method for the vibration signal with amplitude modulation in a bearing system
    • Y. Sheen An analysis method for the vibration signal with amplitude modulation in a bearing system J. Sound Vibr. 303 3-5 2007 538 552
    • (2007) J. Sound Vibr. , vol.303 , Issue.35 , pp. 538-552
    • Sheen, Y.1
  • 13
    • 79953856339 scopus 로고    scopus 로고
    • Weak fault feature extraction of rolling bearing based on cyclic Wiener filter and envelope spectrum
    • Y. Ming, J. Chen, and G. Dong Weak fault feature extraction of rolling bearing based on cyclic Wiener filter and envelope spectrum Mech. Syst. Signal Process. 25 5 2011 1773 1785
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.5 , pp. 1773-1785
    • Ming, Y.1    Chen, J.2    Dong, G.3
  • 14
    • 56249097921 scopus 로고    scopus 로고
    • Diagnosis of subharmonic faults of large rotating machinery based on EMD
    • F. Wu, and L. Qu Diagnosis of subharmonic faults of large rotating machinery based on EMD Mech. Syst. Signal Process. 23 2 2009 467 475
    • (2009) Mech. Syst. Signal Process. , vol.23 , Issue.2 , pp. 467-475
    • Wu, F.1    Qu, L.2
  • 15
    • 70349296776 scopus 로고    scopus 로고
    • A Bayesian machine learning method for sensor selection and fusion with application to on-board fault diagnostics
    • N. Subrahmanya, Y.C. Shin, and P.H. Meckl A Bayesian machine learning method for sensor selection and fusion with application to on-board fault diagnostics Mech. Syst. Signal Process. 24 1 2010 182 192
    • (2010) Mech. Syst. Signal Process. , vol.24 , Issue.1 , pp. 182-192
    • Subrahmanya, N.1    Shin, Y.C.2    Meckl, P.H.3
  • 16
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • A. Widodo, and B. Yang Support vector machine in machine condition monitoring and fault diagnosis Mech. Syst. Signal Process. 21 6 2007 2560 2574
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.6 , pp. 2560-2574
    • Widodo, A.1    Yang, B.2
  • 17
    • 60249095042 scopus 로고    scopus 로고
    • Fault classifier of rotating machinery based on weighted support vector data description
    • Y. Zhang, X.D. Liu, F.D. Xie, and K.Q. Li Fault classifier of rotating machinery based on weighted support vector data description Expert Syst. Appl. 36 4 2009 7928 7932
    • (2009) Expert Syst. Appl. , vol.36 , Issue.4 , pp. 7928-7932
    • Zhang, Y.1    Liu, X.D.2    Xie, F.D.3    Li, K.Q.4
  • 18
    • 77249155059 scopus 로고    scopus 로고
    • Vibration based fault diagnosis of monoblock centrifugal pump using decision tree
    • N.R. Sakthivel, V. Sugumaran, and S. Babudevasenapati Vibration based fault diagnosis of monoblock centrifugal pump using decision tree Expert Syst. Appl. 37 6 2010 4040 4049
    • (2010) Expert Syst. Appl. , vol.37 , Issue.6 , pp. 4040-4049
    • Sakthivel, N.R.1    Sugumaran, V.2    Babudevasenapati, S.3
  • 19
    • 17844375127 scopus 로고    scopus 로고
    • VIBEX: An expert system for vibration fault diagnosis of rotating machinery using decision tree and decision table
    • B. Yang, D. Lim, and A. Tan VIBEX: an expert system for vibration fault diagnosis of rotating machinery using decision tree and decision table Expert Syst. Appl. 28 4 2005 735 742
    • (2005) Expert Syst. Appl. , vol.28 , Issue.4 , pp. 735-742
    • Yang, B.1    Lim, D.2    Tan, A.3
  • 20
    • 70350447149 scopus 로고    scopus 로고
    • Gear fault detection and diagnosis under speed-up condition based on order cepstrum and radial basis function neural network
    • H. Li, Y. Zhang, and H. Zheng Gear fault detection and diagnosis under speed-up condition based on order cepstrum and radial basis function neural network J. Mech. Sci. Technol. 23 10 2009 2780 2789
    • (2009) J. Mech. Sci. Technol. , vol.23 , Issue.10 , pp. 2780-2789
    • Li, H.1    Zhang, Y.2    Zheng, H.3
  • 21
    • 81855170055 scopus 로고    scopus 로고
    • Induction motors bearing fault detection using pattern recognition techniques
    • J. Zarei Induction motors bearing fault detection using pattern recognition techniques Expert Syst. Appl. 39 2012 68 73
    • (2012) Expert Syst. Appl. , vol.39 , pp. 68-73
    • Zarei, J.1
  • 22
    • 33846798101 scopus 로고    scopus 로고
    • Subspace-based gearbox condition monitoring by kernel principal component analysis
    • Q. He, F. Kong, and R. Yan Subspace-based gearbox condition monitoring by kernel principal component analysis Mech. Syst. Signal Process. 21 4 2007 1755 1772
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.4 , pp. 1755-1772
    • He, Q.1    Kong, F.2    Yan, R.3
  • 23
    • 56249137558 scopus 로고    scopus 로고
    • Machine condition monitoring using principal component representations
    • Q. He, R. Yan, F. Kong, and R. Du Machine condition monitoring using principal component representations Mech. Syst. Signal Process. 23 2 2009 446 466
    • (2009) Mech. Syst. Signal Process. , vol.23 , Issue.2 , pp. 446-466
    • He, Q.1    Yan, R.2    Kong, F.3    Du, R.4
  • 24
    • 85018189705 scopus 로고    scopus 로고
    • Combining RBF-PCA-ReliefF filter for a better diagnosis performance
    • H. Fakhfakh, T.W. Bartelmus, F. Chaari, R. Zimroz, M. Haddar, Springer Heidelberg
    • I. Khelf, L. Laouar, and H. Bendjama Combining RBF-PCA-ReliefF filter for a better diagnosis performance H. Fakhfakh, T.W. Bartelmus, F. Chaari, R. Zimroz, M. Haddar, Condition Monitoring of Machinery in Non-Stationary Operations 2012 Springer Heidelberg 285 292
    • (2012) Condition Monitoring of Machinery in Non-Stationary Operations , pp. 285-292
    • Khelf, I.1    Laouar, L.2    Bendjama, H.3
  • 25
    • 33750591809 scopus 로고    scopus 로고
    • Feature selection using Decision Tree and classification through proximal support vector machine for fault diagnostics of roller bearing
    • V. Sugumaran, V. Muralidharan, and K. Ramachandran Feature selection using Decision Tree and classification through proximal support vector machine for fault diagnostics of roller bearing Mech. Syst. Signal Process. 21 2 2007 930 942
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.2 , pp. 930-942
    • Sugumaran, V.1    Muralidharan, V.2    Ramachandran, K.3
  • 26
    • 60849111090 scopus 로고    scopus 로고
    • Fault diagnosis of spur bevel gear box using discrete wavelet features and Decision Tree classification
    • N. Saravanan, and K.I. Ramachandran Fault diagnosis of spur bevel gear box using discrete wavelet features and Decision Tree classification Expert Syst. Appl. 36 5 2009 9564 9573
    • (2009) Expert Syst. Appl. , vol.36 , Issue.5 , pp. 9564-9573
    • Saravanan, N.1    Ramachandran, K.I.2
  • 27
    • 56349105011 scopus 로고    scopus 로고
    • Vibration-based fault diagnosis of spur bevel gear box using fuzzy technique
    • N. Saravanan, S. Cholairajan, and K. Ramachandran Vibration-based fault diagnosis of spur bevel gear box using fuzzy technique Expert Syst. Appl. 36 2 2009 3119 3135
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 3119-3135
    • Saravanan, N.1    Cholairajan, S.2    Ramachandran, K.3
  • 28
    • 77957849085 scopus 로고    scopus 로고
    • Minimum sample size determination of vibration signals in machine learning approach to fault diagnosis using power analysis
    • V. Indira, R. Vasanthakumari, and V. Sugumaran Minimum sample size determination of vibration signals in machine learning approach to fault diagnosis using power analysis Expert Syst. Appl. 37 12 2010 8650 8658
    • (2010) Expert Syst. Appl. , vol.37 , Issue.12 , pp. 8650-8658
    • Indira, V.1    Vasanthakumari, R.2    Sugumaran, V.3
  • 30
    • 84883875229 scopus 로고    scopus 로고
    • Influence du choix des indicateurs lors du diagnostic des machines tournantes
    • Sousse, Tunisia (in French)
    • I. Khelf, L. Laouar, Influence du choix des indicateurs lors du diagnostic des machines tournantes, in: Proceeding of CMSM 2011,Sousse, Tunisia, 2011 (in French).
    • (2011) Proceeding of CMSM 2011
    • Khelf, I.1    Laouar, L.2
  • 31
    • 84883872621 scopus 로고    scopus 로고
    • Amélioration du diagnostic d'une machine tournante par la sélection du vecteur d'entrée
    • Besançon, France, (in French)
    • I. Khelf, L. Laouar, Amélioration du diagnostic d'une machine tournante par la sélection du vecteur d'entrée, in: Proceeding of Congrès Français de Mécanique 2011, Besançon, France, 2011 (in French).
    • (2011) Proceeding of Congrès Français de Mécanique 2011
    • Khelf, I.1    Laouar, L.2
  • 32
    • 84883865851 scopus 로고    scopus 로고
    • Automated diagnosis of an industrial machine using intelligent techniques
    • Oran, Algeria
    • I. Khelf, L. Laouar, Automated diagnosis of an industrial machine using intelligent techniques, in: Proceeding of CIAM 2011, Oran, Algeria, 2011.
    • (2011) Proceeding of CIAM 2011
    • Khelf, I.1    Laouar, L.2
  • 40
    • 77957828707 scopus 로고    scopus 로고
    • Diagnosis of mechanical pumping system using neural networks and system parameters analysis
    • T.M. Tsai, and W.H. Wang Diagnosis of mechanical pumping system using neural networks and system parameters analysis J. Mech. Sci. Technol. 23 1 2009 124 135
    • (2009) J. Mech. Sci. Technol. , vol.23 , Issue.1 , pp. 124-135
    • Tsai, T.M.1    Wang, W.H.2
  • 41
    • 84859211630 scopus 로고    scopus 로고
    • Support vector machine classifier for diagnosis in electrical machines: Application to broken bar
    • D. Matić, F. Kulić, M. Pineda-Sánchez, and I. Kamenko Support vector machine classifier for diagnosis in electrical machines: application to broken bar Expert Syst. Appl. 39 2012 8681 8689
    • (2012) Expert Syst. Appl. , vol.39 , pp. 8681-8689
    • Matić, D.1    Kulić, F.2    Pineda-Sánchez, M.3    Kamenko, I.4
  • 42
    • 0036160859 scopus 로고    scopus 로고
    • Efficient SVM regression training with SMO
    • G.W. Flake, and S. Lawrence Efficient SVM regression training with SMO Mach. Learn. 46 1 2002 271 290
    • (2002) Mach. Learn. , vol.46 , Issue.1 , pp. 271-290
    • Flake, G.W.1    Lawrence, S.2
  • 43
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Scholkopf, C. Burges, A. Smola, MIT Press Cambridge, MA
    • J. Platt Fast training of support vector machines using sequential minimal optimization B. Scholkopf, C. Burges, A. Smola, Advances in Kernel Methods Support Vector Learning 1998 MIT Press Cambridge, MA 185 208
    • (1998) Advances in Kernel Methods Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 45
    • 34047251878 scopus 로고    scopus 로고
    • Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing
    • V. Sugumaran, and K. Ramachandran Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing Mech. Syst. Signal Process. 21 5 2007 2237 2247
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.5 , pp. 2237-2247
    • Sugumaran, V.1    Ramachandran, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.