-
1
-
-
9644259008
-
Inflammation and apoptosis: Linked therapeutic targets in spinal cord injury
-
Beattie MS. Inflammation and apoptosis: Linked therapeutic targets in spinal cord injury. Trends Mol Med 2004;10:580-583.
-
(2004)
Trends Mol Med
, vol.10
, pp. 580-583
-
-
Beattie, M.S.1
-
2
-
-
33746285448
-
Therapeutic interventions after spinal cord injury
-
Thuret S, Moon LDF, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 2006;7:628-643.
-
(2006)
Nat Rev Neurosci
, vol.7
, pp. 628-643
-
-
Thuret, S.1
Moon, L.D.F.2
Gage, F.H.3
-
3
-
-
84859905286
-
Cell-based transplantation strategies to promote plasticity following spinal cord injury
-
Ruff CA, Wilcox JT, Fehlings MG. Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp Neurol 2012;235:78-90.
-
(2012)
Exp Neurol
, vol.235
, pp. 78-90
-
-
Ruff, C.A.1
Wilcox, J.T.2
Fehlings, M.G.3
-
5
-
-
74949087489
-
Stem cells in human neurodegenerative disorders - Time for clinical translation?
-
Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders - Time for clinical translation? J Clin Investig 2010;120: 29-40.
-
(2010)
J Clin Investig
, vol.120
, pp. 29-40
-
-
Lindvall, O.1
Kokaia, Z.2
-
6
-
-
79956217683
-
Translating stem cell studies to the clinic for CNS repair: Current state of the art and the need for a rosetta stone
-
Aboody K, Capela A, Niazi N et al. Translating stem cell studies to the clinic for CNS repair: current state of the art and the need for a rosetta stone. Neuron 2011;70:597-613.
-
(2011)
Neuron
, vol.70
, pp. 597-613
-
-
Aboody, K.1
Capela, A.2
Niazi, N.3
-
7
-
-
79956205263
-
Neural stem cells: Historical perspective and future prospects
-
Breunig JJ, Haydar TF, Rakic P. Neural stem cells: Historical perspective and future prospects. Neuron 2011;70:614-625.
-
(2011)
Neuron
, vol.70
, pp. 614-625
-
-
Breunig, J.J.1
Haydar, T.F.2
Rakic, P.3
-
8
-
-
25444455637
-
Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice
-
Cummings BJ, Uchida N, Tamaki SJ et al. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA 2005;102:14069-14074.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 14069-14074
-
-
Cummings, B.J.1
Uchida, N.2
Tamaki, S.J.3
-
9
-
-
33745684551
-
The therapeutic potential of neural stem cells
-
Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nat Rev Neurosci 2006;7:395-406.
-
(2006)
Nat Rev Neurosci
, vol.7
, pp. 395-406
-
-
Martino, G.1
Pluchino, S.2
-
10
-
-
32244446601
-
Cellular transplants in China: Observational study from the largest human experiment in chronic spinal cord injury
-
Dobkin BH, Curt A, Guest J. Cellular transplants in China: Observational study from the largest human experiment in chronic spinal cord injury. Neurorehabil Neural Repair 2006;20:5-13.
-
(2006)
Neurorehabil Neural Repair
, vol.20
, pp. 5-13
-
-
Dobkin, B.H.1
Curt, A.2
Guest, J.3
-
11
-
-
77957912229
-
Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model
-
Salazar DL, Uchida N, Hamers FP et al. Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. Plos One 2010;5:e12272.
-
(2010)
Plos One
, vol.5
-
-
Salazar, D.L.1
Uchida, N.2
Hamers, F.P.3
-
12
-
-
76149105178
-
Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord
-
Karimi-Abdolrezaee S, Eftekharpour E, Wang J et al. Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci 2010;30:1657-1676.
-
(2010)
J Neurosci
, vol.30
, pp. 1657-1676
-
-
Karimi-Abdolrezaee, S.1
Eftekharpour, E.2
Wang, J.3
-
13
-
-
75349094565
-
Challenges of stem cell therapy for spinal cord injury: Human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells?
-
2010
-
Ronaghi M, Erceg S, Moreno-Manzano V et al. (2010) Challenges of stem cell therapy for spinal cord injury: Human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells 2010;28:93-99.
-
(2010)
Stem Cells
, vol.28
, pp. 93-99
-
-
Ronaghi, M.1
Erceg, S.2
Moreno-Manzano, V.3
-
14
-
-
79960832807
-
A systematic review of cellular transplantation therapies for spinal cord injury
-
Tetzlaff W, Okon EB, Karimi-Abdolrezaee S et al. A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 2011;28:1611-1682.
-
(2011)
J Neurotrauma
, vol.28
, pp. 1611-1682
-
-
Tetzlaff, W.1
Okon, E.B.2
Karimi-Abdolrezaee, S.3
-
15
-
-
18644384444
-
Human embryonic stem cellderived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury
-
Keirstead HS, Nistor G, Bernal G et al. Human embryonic stem cellderived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 2005;25: 4694-4705.
-
(2005)
J Neurosci
, vol.25
, pp. 4694-4705
-
-
Keirstead, H.S.1
Nistor, G.2
Bernal, G.3
-
16
-
-
84869462797
-
Direct isolation and RNAseq reveal environment-dependent properties of engrafted neural stem/progenitor cells
-
Kumamaru H, Ohkawa Y, Saiwai H et al. Direct isolation and RNAseq reveal environment-dependent properties of engrafted neural stem/progenitor cells. Nat Commun 2012;3:1140.
-
(2012)
Nat Commun
, vol.3
, pp. 1140
-
-
Kumamaru, H.1
Ohkawa, Y.2
Saiwai, H.3
-
17
-
-
57749195712
-
RNA-Seq: A revolutionary tool for transcriptomics
-
Wang Z, Gerstein M, Snyder M. RNA-Seq: A revolutionary tool for transcriptomics. Nat Rev Genet 2009;10:57-63.
-
(2009)
Nat Rev Genet
, vol.10
, pp. 57-63
-
-
Wang, Z.1
Gerstein, M.2
Snyder, M.3
-
18
-
-
46249103973
-
Stem cell transcriptome profiling via massive-scale mRNA sequencing
-
Cloonan N, Forrest ARR, Kolle G et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 2008;5: 613-619.
-
(2008)
Nat Methods
, vol.5
, pp. 613-619
-
-
Cloonan, N.1
Forrest, A.R.R.2
Kolle, G.3
-
19
-
-
58849107237
-
Transcriptome content and dynamics at single-nucleotide resolution
-
Cloonan N, Grimmond SM. Transcriptome content and dynamics at single-nucleotide resolution. Genome Biol 2008;9:234.
-
(2008)
Genome Biol
, vol.9
, pp. 234
-
-
Cloonan, N.1
Grimmond, S.M.2
-
20
-
-
84855723410
-
Age-related differences in cellular and molecular profiles of inflammatory responses after spinal cord injury
-
Kumamaru H, Saiwai H, Ohkawa Y et al. Age-related differences in cellular and molecular profiles of inflammatory responses after spinal cord injury. J Cell Physiol 2012;227:1335-1346.
-
(2012)
J Cell Physiol
, vol.227
, pp. 1335-1346
-
-
Kumamaru, H.1
Saiwai, H.2
Ohkawa, Y.3
-
21
-
-
77952789028
-
A combined scoring method to assess behavioral recovery after mouse spinal cord injury
-
Pajoohesh-Ganji A, Byrnes KR, Fatemi G et al. A combined scoring method to assess behavioral recovery after mouse spinal cord injury. Neurosci Res 2010;67:117-125.
-
(2010)
Neurosci Res
, vol.67
, pp. 117-125
-
-
Pajoohesh-Ganji, A.1
Byrnes, K.R.2
Fatemi, G.3
-
22
-
-
27744576838
-
In vivo imaging of engrafted neural stem cells: Its application in evaluating the optimal timing of transplantation for spinal cord injury
-
Okada S, Ishii K, Yamane J et al. In vivo imaging of engrafted neural stem cells: its application in evaluating the optimal timing of transplantation for spinal cord injury. Faseb J 2005;19:1839-1841.
-
(2005)
Faseb J
, vol.19
, pp. 1839-1841
-
-
Okada, S.1
Ishii, K.2
Yamane, J.3
-
23
-
-
77952123055
-
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
-
Trapnell C, Williams BA, Pertea G et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010;28: 511-U174.
-
(2010)
Nat Biotechnol
, vol.28
-
-
Trapnell, C.1
Williams, B.A.2
Pertea, G.3
-
24
-
-
46249106990
-
Mapping and quantifying mammalian transcriptomes by RNA-Seq
-
Mortazavi A, Williams BA, Mccue K et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008;5: 621-628.
-
(2008)
Nat Methods
, vol.5
, pp. 621-628
-
-
Mortazavi, A.1
Williams, B.A.2
Mccue, K.3
-
25
-
-
20044370811
-
Allodynia limits the usefulness of intraspinal neural stem cell grafts; Directed differentiation improves outcome
-
Hofstetter CP, Holmstrom NAV, Lilja JA et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 2005;8:346-353.
-
(2005)
Nat Neurosci
, vol.8
, pp. 346-353
-
-
Hofstetter, C.P.1
Holmstrom, N.A.V.2
Lilja, J.A.3
-
27
-
-
33645455547
-
Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury
-
Karimi-Abdolrezaee S, Eftekharpour E, Wang J et al. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 2006;26:3377-3389.
-
(2006)
J Neurosci
, vol.26
, pp. 3377-3389
-
-
Karimi-Abdolrezaee, S.1
Eftekharpour, E.2
Wang, J.3
-
28
-
-
34249740787
-
Autologous adult rodent neural progenitor cell transplantation represents a feasible strategy to promote structural repair in the chronically injured spinal cord
-
Pfeifer K, Vroemen M, Caioni M et al. Autologous adult rodent neural progenitor cell transplantation represents a feasible strategy to promote structural repair in the chronically injured spinal cord. Regen Med 2006;1:255-266.
-
(2006)
Regen Med
, vol.1
, pp. 255-266
-
-
Pfeifer, K.1
Vroemen, M.2
Caioni, M.3
-
29
-
-
0042665641
-
The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury
-
Jones LL, Margolis RU, Tuszynski MH. The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol 2003;182: 399-411.
-
(2003)
Exp Neurol
, vol.182
, pp. 399-411
-
-
Jones, L.L.1
Margolis, R.U.2
Tuszynski, M.H.3
-
30
-
-
0036550340
-
NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors
-
Jones LL, Yamaguchi Y, Stallcup WB et al. NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors. J Neurosci 2002;22:2792-2803.
-
(2002)
J Neurosci
, vol.22
, pp. 2792-2803
-
-
Jones, L.L.1
Yamaguchi, Y.2
Stallcup, W.B.3
-
31
-
-
29344451629
-
Chondroitinase ABC combined with neural stem progenitor cell transplantation enhances graft cell migration and outgrowth of growth-associated protein-43-positive fibers after rat spinal cord injury
-
Ikegami T, Nakamura M, Yamane J et al. Chondroitinase ABC combined with neural stem progenitor cell transplantation enhances graft cell migration and outgrowth of growth-associated protein-43-positive fibers after rat spinal cord injury. Eur J Neurosci 2005;22:3036-3046.
-
(2005)
Eur J Neurosci
, vol.22
, pp. 3036-3046
-
-
Ikegami, T.1
Nakamura, M.2
Yamane, J.3
-
32
-
-
0037310986
-
Changes in distribution, cell associations, and protein expression levels of NG2, neurocan, phosphacan, brevican, versican V2, and tenascin-C during acute to chronic maturation of spinal cord scar tissue
-
Tang XF, Davies JE, Davies SJA. Changes in distribution, cell associations, and protein expression levels of NG2, neurocan, phosphacan, brevican, versican V2, and tenascin-C during acute to chronic maturation of spinal cord scar tissue. J Neurosci Res 2003;71:427-444.
-
(2003)
J Neurosci Res
, vol.71
, pp. 427-444
-
-
Tang, X.F.1
Davies, J.E.2
Davies, S.J.A.3
-
33
-
-
68949212366
-
NG2 and phosphacan are present in the astroglial scar after human traumatic spinal cord injury
-
Buss A, Pech K, Kakulas BA et al. NG2 and phosphacan are present in the astroglial scar after human traumatic spinal cord injury. BMC Neurol 2009;9:32.
-
(2009)
BMC Neurol
, vol.9
, pp. 32
-
-
Buss, A.1
Pech, K.2
Kakulas, B.A.3
-
34
-
-
0041700229
-
Repair of chronic spinal cord injury
-
Houle JD, Tessler A. Repair of chronic spinal cord injury. Exp Neurol 2003;182:247-260.
-
(2003)
Exp Neurol
, vol.182
, pp. 247-260
-
-
Houle, J.D.1
Tessler, A.2
-
35
-
-
0037204590
-
Insulin-like growth factor-I and neurogenesis in the adult mammalian brain
-
Anderson MF, Aberg MAI, Nilsson M et al. Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Dev Brain Res 2002;134:115-122.
-
(2002)
Dev Brain Res
, vol.134
, pp. 115-122
-
-
Anderson, M.F.1
Aberg, M.A.I.2
Nilsson, M.3
-
36
-
-
80051904826
-
From cradle to grave: The multiple roles of fibroblast growth factors in neural development
-
Guillemot F, Zimmer C. From cradle to grave: The multiple roles of fibroblast growth factors in neural development. Neuron 2011;71:574-588.
-
(2011)
Neuron
, vol.71
, pp. 574-588
-
-
Guillemot, F.1
Zimmer, C.2
-
37
-
-
72449188688
-
Transplanted neural precursors enhance host brain-derived myelin regeneration
-
Einstein O, Friedman-Levi Y, Grigoriadis N et al. Transplanted neural precursors enhance host brain-derived myelin regeneration. J Neurosci 2009;29:15694-15702.
-
(2009)
J Neurosci
, vol.29
, pp. 15694-15702
-
-
Einstein, O.1
Friedman-Levi, Y.2
Grigoriadis, N.3
-
38
-
-
70450195049
-
Roles of ES cell-derived gliogenic neural stem/progenitor cells in functional recovery after spinal cord injury
-
Kumagai G, Okada Y, Yamane J et al. Roles of ES cell-derived gliogenic neural stem/progenitor cells in functional recovery after spinal cord injury. Plos One 2009;4:e7706.
-
(2009)
Plos One
, vol.4
-
-
Kumagai, G.1
Okada, Y.2
Yamane, J.3
-
39
-
-
22444450988
-
Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism
-
Pluchino S, Zanotti L, Rossi B et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 2005;436:266-271.
-
(2005)
Nature
, vol.436
, pp. 266-271
-
-
Pluchino, S.1
Zanotti, L.2
Rossi, B.3
-
40
-
-
34147160607
-
Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease
-
Lee JP, Jeyakumar M, Gonzalez R et al. Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med 2007;13:439-447.
-
(2007)
Nat Med
, vol.13
, pp. 439-447
-
-
Lee, J.P.1
Jeyakumar, M.2
Gonzalez, R.3
-
41
-
-
0033168687
-
Developmental requirement of gp130 signaling in neuronal survival and astrocyte differentiation
-
Nakashima K, Wiese S, Yanagisawa M et al. Developmental requirement of gp130 signaling in neuronal survival and astrocyte differentiation. J Neurosci 1999;19:5429-5434.
-
(1999)
J Neurosci
, vol.19
, pp. 5429-5434
-
-
Nakashima, K.1
Wiese, S.2
Yanagisawa, M.3
-
42
-
-
0030708523
-
Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway
-
Bonni A, Sun Y, NadalVicens M, Bhatt A et al. Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 1997;278:477-483.
-
(1997)
Science
, vol.278
, pp. 477-483
-
-
Bonni, A.1
Sun, Y.2
Nadalvicens, M.3
Bhatt, A.4
-
43
-
-
0032539913
-
Neural precursor differentiation into astrocytes requires signaling through the leukemia inhibitory factor receptor
-
Koblar SA, Turnley AM, Classon BJ et al. Neural precursor differentiation into astrocytes requires signaling through the leukemia inhibitory factor receptor. Proc Natl Acad Sci USA 1998;95:3178-3181.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 3178-3181
-
-
Koblar, S.A.1
Turnley, A.M.2
Classon, B.J.3
-
44
-
-
23944450567
-
Role of IL-6 in the neural stem cell differentiation
-
Taga T, Fukuda S. Role of IL-6 in the neural stem cell differentiation. Clin Rev Allergy Immunol 2005;28:249-256.
-
(2005)
Clin Rev Allergy Immunol
, vol.28
, pp. 249-256
-
-
Taga, T.1
Fukuda, S.2
-
45
-
-
72849129005
-
Astrocyte differentiation of neural precursor cells is enhanced by retinoic acid through a change in epigenetic modification
-
Asano H, Aonuma M, Sanosaka T et al. Astrocyte differentiation of neural precursor cells is enhanced by retinoic acid through a change in epigenetic modification. Stem Cells 2009;27:2744-2752.
-
(2009)
Stem Cells
, vol.27
, pp. 2744-2752
-
-
Asano, H.1
Aonuma, M.2
Sanosaka, T.3
-
46
-
-
70849129748
-
The insulin-like growth factor (IGF) receptor type 1 (IGF1R) as an essential component of the signalling network regulating neurogenesis
-
Annenkov A. The insulin-like growth factor (IGF) receptor type 1 (IGF1R) as an essential component of the signalling network regulating neurogenesis. Mol Neurobiol 2009;40:195-215.
-
(2009)
Mol Neurobiol
, vol.40
, pp. 195-215
-
-
Annenkov, A.1
-
47
-
-
70449678738
-
Molecular dissection of reactive astrogliosis and glial scar formation
-
Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 2009;32:638-647.
-
(2009)
Trends Neurosci
, vol.32
, pp. 638-647
-
-
Sofroniew, M.V.1
-
48
-
-
0742288565
-
Regeneration beyond the glial scar
-
Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004;5:146-156.
-
(2004)
Nat Rev Neurosci
, vol.5
, pp. 146-156
-
-
Silver, J.1
Miller, J.H.2
-
49
-
-
78751677843
-
The stem cell potential of glia: Lessons from reactive gliosis
-
Robel S, Berninger B, Gotz M. The stem cell potential of glia: Lessons from reactive gliosis. Nat Rev Neurosci 2011;12:88-104.
-
(2011)
Nat Rev Neurosci
, vol.12
, pp. 88-104
-
-
Robel, S.1
Berninger, B.2
Gotz, M.3
-
50
-
-
0035313488
-
FGF and VEGF function in angiogenesis: Signalling pathways, biological responses and therapeutic inhibition
-
Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis: Signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 2001;22:201-207.
-
(2001)
Trends Pharmacol Sci
, vol.22
, pp. 201-207
-
-
Cross, M.J.1
Claesson-Welsh, L.2
-
51
-
-
0034941330
-
Nerve growth factor signaling, neuroprotection, and neural repair
-
Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 2001;24: 1217-1281.
-
(2001)
Annu Rev Neurosci
, vol.24
, pp. 1217-1281
-
-
Sofroniew, M.V.1
Howe, C.L.2
Mobley, W.C.3
-
52
-
-
81755179427
-
Mediators of oligodendrocyte differentiation during remyelination
-
Patel JR, Klein RS. Mediators of oligodendrocyte differentiation during remyelination. FEBS Lett 2011;585:3730-3737.
-
(2011)
FEBS Lett
, vol.585
, pp. 3730-3737
-
-
Patel, J.R.1
Klein, R.S.2
-
53
-
-
78650177929
-
Cells of the oligodendroglial lineage, myelination, and remyelination
-
Miron VE, Kuhlmann T, Antel JP. Cells of the oligodendroglial lineage, myelination, and remyelination. Biochim Biophys Acta 2011; 1812:184-193.
-
(2011)
Biochim Biophys Acta
, vol.1812
, pp. 184-193
-
-
Miron, V.E.1
Kuhlmann, T.2
Antel, J.P.3
-
54
-
-
16644382257
-
Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS
-
Storkebaum E, Lambrechts D, Dewerchin M et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 2005;8:85-92.
-
(2005)
Nat Neurosci
, vol.8
, pp. 85-92
-
-
Storkebaum, E.1
Lambrechts, D.2
Dewerchin, M.3
-
56
-
-
42749096670
-
Axonal growth therapeutics: Regeneration or sprouting or plasticity?
-
Cafferty WBJ, Mcgee AW, Strittmatter SM. Axonal growth therapeutics: Regeneration or sprouting or plasticity? Trends Neurosci 2008; 31:215-220.
-
(2008)
Trends Neurosci
, vol.31
, pp. 215-220
-
-
Cafferty, W.B.J.1
Mcgee, A.W.2
Strittmatter, S.M.3
-
57
-
-
0035319602
-
Plasticity of motor systems after incomplete spinal cord injury
-
Raineteau O, Schwab ME. Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci 2001;2:263-273.
-
(2001)
Nat Rev Neurosci
, vol.2
, pp. 263-273
-
-
Raineteau, O.1
Schwab, M.E.2
|