-
1
-
-
77957333271
-
-
10.1103/PhysRevB.82.054403
-
J. C. Slonczewski, Phys. Rev. B 82, 054403 (2010). 10.1103/PhysRevB.82. 054403
-
(2010)
Phys. Rev. B
, vol.82
, pp. 054403
-
-
Slonczewski, J.C.1
-
4
-
-
77950496871
-
-
10.1063/1.3397043
-
J. S. Moodera, G.-X. Miao, and T. S. Santos, Phys. Today 63 (4), 46 (2010). 10.1063/1.3397043
-
(2010)
Phys. Today
, vol.63
, Issue.4
, pp. 46
-
-
Moodera, J.S.1
Miao, G.-X.2
Santos, T.S.3
-
5
-
-
82555192607
-
-
10.1002/adfm.201101469
-
T. R. Paudel, A. Zakutayev, S. Lany, M. d'Avezac, and A. Zunger, Adv. Funct. Mater. 21, 4493-4501 (2011). 10.1002/adfm.201101469
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 4493-4501
-
-
Paudel, T.R.1
Zakutayev, A.2
Lany, S.3
D'Avezac, M.4
Zunger, A.5
-
6
-
-
79551538955
-
-
10.1103/PhysRevB.83.014108
-
M. N. Iliev, D. Mazumdar, J. X. Ma, A. Gupta, F. Rigato, and J. Fontcuberta, Phys. Rev. B 83, 014108 (2011). 10.1103/PhysRevB.83.014108
-
(2011)
Phys. Rev. B
, vol.83
, pp. 014108
-
-
Iliev, M.N.1
Mazumdar, D.2
Ma, J.X.3
Gupta, A.4
Rigato, F.5
Fontcuberta, J.6
-
7
-
-
77957591581
-
-
10.1103/PhysRevB.82.104117
-
D. Fritsch and C. Ederer, Phys. Rev. B 82, 104117 (2010). 10.1103/PhysRevB.82.104117
-
(2010)
Phys. Rev. B
, vol.82
, pp. 104117
-
-
Fritsch, D.1
Ederer, C.2
-
9
-
-
33751537434
-
-
10.1103/PhysRevB.74.174431
-
Z. Szotek, W. M. Temmerman, D. Ködderitzsch, A. Svane, L. Petit, and H. Winter, Phys. Rev. B 74, 174431 (2006). 10.1103/PhysRevB.74.174431
-
(2006)
Phys. Rev. B
, vol.74
, pp. 174431
-
-
Szotek, Z.1
Temmerman, W.M.2
Ködderitzsch, D.3
Svane, A.4
Petit, L.5
Winter, H.6
-
10
-
-
33745824282
-
-
10.1002/adma.200500972
-
U. Luders, A. Barthelemy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, J.-P. Contour, J.-F. Bobo, J. Fontcuberta, and A. Fert, Adv. Mater. 18, 1733 (2006). 10.1002/adma.200500972
-
(2006)
Adv. Mater.
, vol.18
, pp. 1733
-
-
Luders, U.1
Barthelemy, A.2
Bibes, M.3
Bouzehouane, K.4
Fusil, S.5
Jacquet, E.6
Contour, J.-P.7
Bobo, J.-F.8
Fontcuberta, J.9
Fert, A.10
-
11
-
-
34648833760
-
-
10.1063/1.2787880
-
A. V. Ramos, M.-J. Guittet, J.-B. Moussy, R. Mattana, C. Deranlot, F. Petroff, and C. Gatel, Appl. Phys. Lett. 91, 122107 (2007). 10.1063/1.2787880
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 122107
-
-
Ramos, A.V.1
Guittet, M.-J.2
Moussy, J.-B.3
Mattana, R.4
Deranlot, C.5
Petroff, F.6
Gatel, C.7
-
12
-
-
56349114528
-
-
10.1103/PhysRevB.78.180402
-
A. V. Ramos, T. S. Santos, G. X. Miao, M.-J. Guittet, J.-B. Moussy, and J. S. Moodera, Phys. Rev. B 78, 180402R (2008). 10.1103/PhysRevB.78.180402
-
(2008)
Phys. Rev. B
, vol.78
-
-
Ramos, A.V.1
Santos, T.S.2
Miao, G.X.3
Guittet, M.-J.4
Moussy, J.-B.5
Moodera, J.S.6
-
13
-
-
77955453538
-
-
10.1103/PhysRevB.81.174415
-
F. Rigato, S. Piano, M. Foerster, F. Giubileo, A. M. Cucolo, and J. Fontcuberta, Phys. Rev. B 81, 174415 (2010). 10.1103/PhysRevB.81.174415
-
(2010)
Phys. Rev. B
, vol.81
, pp. 174415
-
-
Rigato, F.1
Piano, S.2
Foerster, M.3
Giubileo, F.4
Cucolo, A.M.5
Fontcuberta, J.6
-
14
-
-
77955875708
-
-
10.1103/PhysRevB.81.214421
-
B. B. Nelson-Cheeseman, F. J. Wong, R. V. Chopdekar, E. Arenholz, and Y. Suzuki, Phys. Rev. B 81, 214421 (2010). 10.1103/PhysRevB.81.214421
-
(2010)
Phys. Rev. B
, vol.81
, pp. 214421
-
-
Nelson-Cheeseman, B.B.1
Wong, F.J.2
Chopdekar, R.V.3
Arenholz, E.4
Suzuki, Y.5
-
15
-
-
84872963776
-
-
10.1103/PhysRevB.87.024419
-
N. M. Caffrey, D. Fritsch, T. Archer, S. Sanvito, and C. Ederer, Phys. Rev. B 87, 024419 (2013). 10.1103/PhysRevB.87.024419
-
(2013)
Phys. Rev. B
, vol.87
, pp. 024419
-
-
Caffrey, N.M.1
Fritsch, D.2
Archer, T.3
Sanvito, S.4
Ederer, C.5
-
16
-
-
84869017612
-
-
10.1103/PhysRevB.86.205106
-
Q.-C. Sun, H. Sims, D. Mazumdar, J. X. Ma, B. S. Holinsworth, K. R. O'Neal, G. Kim, W. H. Butler, A. Gupta, and J. L. Musfeldt, Phys. Rev. B 86, 205106 (2012). 10.1103/PhysRevB.86.205106
-
(2012)
Phys. Rev. B
, vol.86
, pp. 205106
-
-
Sun, Q.-C.1
Sims, H.2
Mazumdar, D.3
Ma, J.X.4
Holinsworth, B.S.5
O'Neal, K.R.6
Kim, G.7
Butler, W.H.8
Gupta, A.9
Musfeldt, J.L.10
-
17
-
-
84883371291
-
-
In the context of this work the band gahierarchy refers to the presence of multiple charge gaps in the optical absorption spectrum.
-
In the context of this work the band gap hierarchy refers to the presence of multiple charge gaps in the optical absorption spectrum.
-
-
-
-
18
-
-
84863690763
-
-
10.1103/PhysRevB.86.014406
-
D. Fritsch and C. Ederer, Phys. Rev. B 86, 014406 (2012). 10.1103/PhysRevB.86.014406
-
(2012)
Phys. Rev. B
, vol.86
, pp. 014406
-
-
Fritsch, D.1
Ederer, C.2
-
19
-
-
36149021963
-
-
10.1103/PhysRev.99.1727
-
R. D. Waldron, Phys. Rev. 99, 1727 (1955). 10.1103/PhysRev.99.1727
-
(1955)
Phys. Rev.
, vol.99
, pp. 1727
-
-
Waldron, R.D.1
-
20
-
-
84856029593
-
-
10.1007/s00339-011-6549-z
-
R. C. Rai, S. Wilser, M. Guminiak, B. Cai, and M. L. Nakarmi, Appl. Phys. A: Mater. Sci. Process. 106, 207 (2012). 10.1007/s00339-011-6549-z
-
(2012)
Appl. Phys. A: Mater. Sci. Process.
, vol.106
, pp. 207
-
-
Rai, R.C.1
Wilser, S.2
Guminiak, M.3
Cai, B.4
Nakarmi, M.L.5
-
22
-
-
77957732877
-
-
10.1063/1.3488638
-
J. X. Ma, D. Mazumdar, G. Kim, H. Sato, N. Z. Bao, and A. Gupta, J. Appl. Phys. 108, 063917 (2010). 10.1063/1.3488638
-
(2010)
J. Appl. Phys.
, vol.108
, pp. 063917
-
-
Ma, J.X.1
Mazumdar, D.2
Kim, G.3
Sato, H.4
Bao, N.Z.5
Gupta, A.6
-
23
-
-
0001123218
-
-
10.1103/PhysRev.108.243
-
R. E. Glover and M. Tinkham, Phys. Rev. 108, 243 (1957). 10.1103/PhysRev.108.243
-
(1957)
Phys. Rev.
, vol.108
, pp. 243
-
-
Glover, R.E.1
Tinkham, M.2
-
27
-
-
0011236321
-
-
10.1103/PhysRevB.59.1758
-
G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). 10.1103/PhysRevB.59.1758
-
(1999)
Phys. Rev. B
, vol.59
, pp. 1758
-
-
Kresse, G.1
Joubert, D.2
-
29
-
-
25744460922
-
-
10.1103/PhysRevB.50.17953
-
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). 10.1103/PhysRevB.50. 17953
-
(1994)
Phys. Rev. B
, vol.50
, pp. 17953
-
-
Blöchl, P.E.1
-
31
-
-
77953049768
-
-
10.1063/1.3427499
-
X. S. Xu, J. F. Ihlefeld, J. H. Lee, O. K. Ezekoye, E. Vlahos, R. Ramesh, V. Gopalan, X. Q. Pan, D. G. Schlom, and J. L. Musfeldt, Appl. Phys. Lett. 96, 192901 (2010). 10.1063/1.3427499
-
(2010)
Appl. Phys. Lett.
, vol.96
, pp. 192901
-
-
Xu, X.S.1
Ihlefeld, J.F.2
Lee, J.H.3
Ezekoye, O.K.4
Vlahos, E.5
Ramesh, R.6
Gopalan, V.7
Pan, X.Q.8
Schlom, D.G.9
Musfeldt, J.L.10
-
32
-
-
84862867828
-
-
10.1021/nn301276q
-
Q.-C. Sun, C. S. Birkel, J. Cao, W. Tremel, and J. L. Musfeldt, ACS Nano 6, 4876 (2012). 10.1021/nn301276q
-
(2012)
ACS Nano
, vol.6
, pp. 4876
-
-
Sun, Q.-C.1
Birkel, C.S.2
Cao, J.3
Tremel, W.4
Musfeldt, J.L.5
-
33
-
-
40549093643
-
-
10.1063/1.2887908
-
S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, Appl. Phys. Lett. 92, 091905 (2008). 10.1063/1.2887908
-
(2008)
Appl. Phys. Lett.
, vol.92
, pp. 091905
-
-
Basu, S.R.1
Martin, L.W.2
Chu, Y.H.3
Gajek, M.4
Ramesh, R.5
Rai, R.C.6
Xu, X.7
Musfeldt, J.L.8
-
34
-
-
65449117243
-
-
10.1063/1.3118576
-
M. O. Ramirez, A. Kumar, S. A. Denev, Y. H. Chu, J. Seidel, L. W. Martin, S.-Y. Yang, R. C. Rai, X. S. Xue, J. F. Ihlefeld, N. J. Podraza, E. Saiz, S. Lee, J. Klug, S. W. Cheong, M. J. Bedzyk, O. Auciello, D. G. Schlom, J. Orenstein, R. Ramesh, J. L. Musfeldt, A. P. Litvinchuk, and V. Gopalan, Appl. Phys. Lett. 94, 161905 (2009). 10.1063/1.3118576
-
(2009)
Appl. Phys. Lett.
, vol.94
, pp. 161905
-
-
Ramirez, M.O.1
Kumar, A.2
Denev, S.A.3
Chu, Y.H.4
Seidel, J.5
Martin, L.W.6
Yang, S.-Y.7
Rai, R.C.8
Xue, X.S.9
Ihlefeld, J.F.10
Podraza, N.J.11
Saiz, E.12
Lee, S.13
Klug, J.14
Cheong, S.W.15
Bedzyk, M.J.16
Auciello, O.17
Schlom, D.G.18
Orenstein, J.19
Ramesh, R.20
Musfeldt, J.L.21
Litvinchuk, A.P.22
Gopalan, V.23
more..
-
35
-
-
84883401430
-
-
See supplementary material at E-APPLAB-103-016333 for additional electronic structure data.
-
See supplementary material at http://dx.doi.org/10.1063/1.4818315 E-APPLAB-103-016333 for additional electronic structure data.
-
-
-
-
36
-
-
84883322729
-
-
The LSDA+U and GGA+U methods underestimate the higher gaps considerably compared to our experimental data. Underestimation of gavalues is a well-known shortcoming of the method which can be improved, in principle, by using computationally expensive techniques (such as hybrid functionals and/or the many-body GW method). An alternate possibility is the presence of optically forbidden transitions between valence and conduction bands.
-
The LSDA+U and GGA+U methods underestimate the higher gaps considerably compared to our experimental data. Underestimation of gap values is a well-known shortcoming of the method which can be improved, in principle, by using computationally expensive techniques (such as hybrid functionals and/or the many-body GW method). An alternate possibility is the presence of optically forbidden transitions between valence and conduction bands.
-
-
-
-
37
-
-
67649160774
-
-
10.1021/jp901077c
-
D. Carta, M. F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, and A. Corrias, J. Phys. Chem. C 113, 8606 (2009). 10.1021/jp901077c
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 8606
-
-
Carta, D.1
Casula, M.F.2
Falqui, A.3
Loche, D.4
Mountjoy, G.5
Sangregorio, C.6
Corrias, A.7
-
40
-
-
0000841125
-
-
10.1088/0953-8984/11/7/002
-
R. Zimmermann, P. Steiner, R. Claessen, F. Reinert, S. Hufner, P. Blaha, and P. Dufek, J. Phys.: Condens. Matter 11, 1657 (1999). 10.1088/0953-8984/11/7/ 002
-
(1999)
J. Phys.: Condens. Matter
, vol.11
, pp. 1657
-
-
Zimmermann, R.1
Steiner, P.2
Claessen, R.3
Reinert, F.4
Hufner, S.5
Blaha, P.6
Dufek, P.7
-
43
-
-
0001666626
-
-
10.1103/PhysRevB.2.2679
-
S. H. Wemple, Phys. Rev. B 2, 2679 (1970). 10.1103/PhysRevB.2.2679
-
(1970)
Phys. Rev. B
, vol.2
, pp. 2679
-
-
Wemple, S.H.1
|