메뉴 건너뛰기




Volumn , Issue , 2009, Pages 66-74

Opinion graphs for polarity and discourse classification

Author keywords

[No Author keywords available]

Indexed keywords

GRAPHIC METHODS; NATURAL LANGUAGE PROCESSING SYSTEMS;

EID: 84883267948     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/1708124.1708138     Document Type: Conference Paper
Times cited : (22)

References (30)
  • 1
    • 80053400611 scopus 로고    scopus 로고
    • Distilling opinion in discourse: A preliminary study
    • N. Asher, F. Benamara, and Y. Mathieu. 2008. Distilling opinion in discourse: A preliminary study. COLING-2008.
    • (2008) COLING-2008
    • Asher, N.1    Benamara, F.2    Mathieu, Y.3
  • 2
    • 72449190358 scopus 로고    scopus 로고
    • The power of negative thinking: Exploiting label disagreement in the min-cut classification framework
    • M. Bansal, C. Cardie, and L. Lee. 2008. The power of negative thinking: Exploiting label disagreement in the min-cut classification framework. In COLING- 2008.
    • (2008) COLING- 2008
    • Bansal, M.1    Cardie, C.2    Lee, L.3
  • 5
    • 84860509678 scopus 로고    scopus 로고
    • Sentiment polarity identification in financial news: A cohesion-based approach
    • A. Devitt and K. Ahmad. 2007. Sentiment polarity identification in financial news: A cohesion-based approach. In ACL 2007.
    • (2007) ACL 2007
    • Devitt, A.1    Ahmad, K.2
  • 8
    • 80053381476 scopus 로고    scopus 로고
    • Fully automatic lexicon expansion for domain-oriented sentiment analysis
    • Sydney, Australia
    • H. Kanayama and T. Nasukawa. 2006. Fully automatic lexicon expansion for domain-oriented sentiment analysis. In EMNLP-2006, pages 355-363, Sydney, Australia.
    • (2006) EMNLP-2006 , pp. 355-363
    • Kanayama, H.1    Nasukawa, T.2
  • 9
    • 33646859933 scopus 로고    scopus 로고
    • Sentiment classification of movie reviews using contextual valence shifters
    • A. Kennedy and D. Inkpen. 2006. Sentiment classification of movie reviews using contextual valence shifters. Computational Intelligence, 22(2):110- 125.
    • (2006) Computational Intelligence , vol.22 , Issue.2 , pp. 110-125
    • Kennedy, A.1    Inkpen, D.2
  • 12
    • 35348882767 scopus 로고    scopus 로고
    • Topic sentiment mixture: Modeling facets and opinions in weblogs
    • ACM
    • Q. Mei, X. Ling, M.Wondra, H. Su, and C Zhai. 2007. Topic sentiment mixture: modeling facets and opinions in weblogs. In WWW '07. ACM.
    • (2007) WWW '07
    • Mei, Q.1    Ling, X.2    Wondra, M.3    Su, H.4    Zhai, C.5
  • 14
    • 85141280473 scopus 로고    scopus 로고
    • A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts
    • B. Pang and L. Lee. 2004. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In ACl 2004.
    • (2004) ACl 2004
    • Pang, B.1    Lee, L.2
  • 16
    • 80053269145 scopus 로고    scopus 로고
    • Extracting product features and opinions from reviews
    • A.-M. Popescu and O. Etzioni. 2005. Extracting product features and opinions from reviews. In HLTEMNLP 2005.
    • (2005) HLTEMNLP 2005
    • Popescu, A.-M.1    Etzioni, O.2
  • 18
    • 32044466073 scopus 로고    scopus 로고
    • Markov logic networks
    • M. Richardson and P. Domingos. 2006. Markov logic networks. Mach. Learn., 62(1-2):107-136.
    • (2006) Mach. Learn. , vol.62 , Issue.1-2 , pp. 107-136
    • Richardson, M.1    Domingos, P.2
  • 19
    • 84907336880 scopus 로고    scopus 로고
    • Sentiment analysis based on probabilistic models using inter-sentence information
    • K. Sadamitsu, S. Sekine, and M. Yamamoto. 2008. Sentiment analysis based on probabilistic models using inter-sentence information. In LREC'08.
    • (2008) LREC'08
    • Sadamitsu, K.1    Sekine, S.2    Yamamoto, M.3
  • 20
    • 80053432213 scopus 로고    scopus 로고
    • Multiple aspect ranking using the good grief algorithm
    • B. Snyder and R. Barzilay. 2007. Multiple aspect ranking using the good grief algorithm. In HLT 2007: NAACL.
    • (2007) HLT 2007: NAACL
    • Snyder, B.1    Barzilay, R.2
  • 23
    • 80053408178 scopus 로고    scopus 로고
    • Topic identification for fine-grained opinion analysis
    • V. Stoyanov and C. Cardie. 2008. Topic identification for fine-grained opinion analysis. In Coling 2008.
    • (2008) Coling 2008
    • Stoyanov, V.1    Cardie, C.2
  • 24
    • 84858422719 scopus 로고    scopus 로고
    • Extracting semantic orientations of phrases from dictionary
    • H. Takamura, T. Inui, and M. Okumura. 2007. Extracting semantic orientations of phrases from dictionary. In HLT-NAACL 2007.
    • (2007) HLT-NAACL 2007
    • Takamura, H.1    Inui, T.2    Okumura, M.3
  • 26
    • 80053357527 scopus 로고    scopus 로고
    • Get out the vote: Determining support or opposition from congressional floor-debate transcripts
    • M. Thomas, B. Pang, and L. Lee. 2006. Get out the vote: Determining support or opposition from congressional floor-debate transcripts. In EMNLP 2006.
    • (2006) EMNLP 2006
    • Thomas, M.1    Pang, B.2    Lee, L.3
  • 27
    • 84859906262 scopus 로고    scopus 로고
    • A joint model of text and aspect ratings for sentiment summarization
    • I. Titov and R. McDonald. 2008. A joint model of text and aspect ratings for sentiment summarization. In ACL 2008.
    • (2008) ACL 2008
    • Titov, I.1    McDonald, R.2
  • 28
    • 80053247760 scopus 로고    scopus 로고
    • Recognizing contextual polarity in phrase-level sentiment analysis
    • T. Wilson, J. Wiebe, and P. Hoffmann. 2005. Recognizing contextual polarity in phrase-level sentiment analysis. In HLT-EMNLP 2005.
    • (2005) HLT-EMNLP 2005
    • Wilson, T.1    Wiebe, J.2    Hoffmann, P.3
  • 29
    • 84879413846 scopus 로고    scopus 로고
    • Data mining: Practical machine learning tools and techniques with java implementations
    • I. H. Witten and E. Frank. 2002. Data mining: Practical machine learning tools and techniques with java implementations. SIGMOD Rec., 31(1):76-77.
    • (2002) SIGMOD Rec , vol.31 , Issue.1 , pp. 76-77
    • Witten, I.H.1    Frank, E.2
  • 30
    • 29344473560 scopus 로고    scopus 로고
    • Sentiment analyzer: Extracting sentiments about a given topic using natural language processing techniques
    • J. Yi, T. Nasukawa, R. Bunescu, and W. Niblack. 2003. Sentiment analyzer: Extracting sentiments about a given topic using natural language processing techniques. In ICDM-2003.
    • (2003) ICDM-2003
    • Yi, J.1    Nasukawa, T.2    Bunescu, R.3    Niblack, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.