메뉴 건너뛰기




Volumn 8, Issue 8, 2013, Pages

Independent Component Analysis for Brain fMRI Does Indeed Select for Maximal Independence

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; CALCULATION; DATA ANALYSIS; DATA SYNTHESIS; FUNCTIONAL MAGNETIC RESONANCE IMAGING; FUNCTIONAL NEUROIMAGING; INDEPENDENT COMPONENT ANALYSIS; MATHEMATICAL COMPUTING; NORMAL DISTRIBUTION; STATISTICAL DISTRIBUTION;

EID: 84883245774     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0073309     Document Type: Article
Times cited : (75)

References (20)
  • 1
    • 0031861367 scopus 로고    scopus 로고
    • Analysis of fMRI Data by Blind Separation Into Independent Spatial Components
    • McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, et al. (1998) Analysis of fMRI Data by Blind Separation Into Independent Spatial Components. HumBrain Map 6: 160-188.
    • (1998) HumBrain Map , vol.6 , pp. 160-188
    • McKeown, M.J.1    Makeig, S.2    Brown, G.G.3    Jung, T.P.4    Kindermann, S.S.5
  • 2
    • 0034753663 scopus 로고    scopus 로고
    • A Method for Making Group Inferences from Functional MRI Data Using Independent Component Analysis
    • Calhoun VD, Adali T, Pearlson GD, Pekar JJ, (2001) A Method for Making Group Inferences from Functional MRI Data Using Independent Component Analysis. HumBrain Map 14: 140-151.
    • (2001) HumBrain Map , vol.14 , pp. 140-151
    • Calhoun, V.D.1    Adali, T.2    Pearlson, G.D.3    Pekar, J.J.4
  • 3
    • 0029411030 scopus 로고
    • An information maximisation approach to blind separation and blind deconvolution
    • Bell AJ, Sejnowski TJ, (1995) An information maximisation approach to blind separation and blind deconvolution. Neural Comput 7: 1129-1159.
    • (1995) Neural Comput , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 4
    • 0032612381 scopus 로고    scopus 로고
    • High-order contrasts for independent component analysis
    • Cardoso JF, (1999) High-order contrasts for independent component analysis. Neural Comput 11: 157-192.
    • (1999) Neural Comput , vol.11 , pp. 157-192
    • Cardoso, J.F.1
  • 6
    • 0000660321 scopus 로고    scopus 로고
    • Blind source separation by sparse decomposition in a signal dictionary
    • Zibulevsky M, Pearlmutter BA, (2001) Blind source separation by sparse decomposition in a signal dictionary. Neural Comput 13: 863-882.
    • (2001) Neural Comput , vol.13 , pp. 863-882
    • Zibulevsky, M.1    Pearlmutter, B.A.2
  • 7
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Hoyer P, (2004) Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research 5: 1457-1469.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.1
  • 9
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis
    • Hyvarinen A, Oja E, (1997) A fast fixed-point algorithm for independent component analysis. Neural Comput 9: 1483-1492.
    • (1997) Neural Comput , vol.9 , pp. 1483-1492
    • Hyvarinen, A.1    Oja, E.2
  • 10
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • Attias H, (1999) Independent factor analysis. Neural Comput 11: 803-851.
    • (1999) Neural Comput , vol.11 , pp. 803-851
    • Attias, H.1
  • 12
    • 77954865269 scopus 로고    scopus 로고
    • Complex independent component analysis by entropy bound minimization
    • Li X-L, Adali{dotless} T, (2010) Complex independent component analysis by entropy bound minimization. IEEE Trans Circuits and Systems I 57: 1417-1430.
    • (2010) IEEE Trans Circuits and Systems I , vol.57 , pp. 1417-1430
    • Li, X.-L.1    Adali, T.2
  • 15
    • 34249321979 scopus 로고    scopus 로고
    • Performance of Blind Source Separation Algorithms for fMRI Analysis
    • Correa N, Adali{dotless} T, Calhoun VD, (2007) Performance of Blind Source Separation Algorithms for fMRI Analysis. MagResImag 25: 684.
    • (2007) MagResImag , vol.25 , pp. 684
    • Correa, N.1    Adali, T.2    Calhoun, V.D.3
  • 16
    • 21344453001 scopus 로고    scopus 로고
    • Source-Density Driven Independent Component Analysis Approach for fMRI Data
    • Hong B, Pearlson GD, Calhoun VD, (2005) Source-Density Driven Independent Component Analysis Approach for fMRI Data. HumBrain Map 25: 297-307.
    • (2005) HumBrain Map , vol.25 , pp. 297-307
    • Hong, B.1    Pearlson, G.D.2    Calhoun, V.D.3
  • 17
    • 80053188981 scopus 로고    scopus 로고
    • Application of Independent Component Analysis with Adaptive Density Model to Complex-valued fMRI Data
    • Li H, Correa N, Calhoun VD, Adali{dotless} T, (2011) Application of Independent Component Analysis with Adaptive Density Model to Complex-valued fMRI Data. IEEE Trans Biomed Eng 58: 2794-2803.
    • (2011) IEEE Trans Biomed Eng , vol.58 , pp. 2794-2803
    • Li, H.1    Correa, N.2    Calhoun, V.D.3    Adali, T.4
  • 19
    • 0033556834 scopus 로고    scopus 로고
    • Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources
    • Lee TW, Girolami M, Sejnowski TJ, (1999) Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources. Neural Comput 11: 417-441.
    • (1999) Neural Comput , vol.11 , pp. 417-441
    • Lee, T.W.1    Girolami, M.2    Sejnowski, T.J.3
  • 20
    • 0242404415 scopus 로고    scopus 로고
    • Independent component analysis of functional MRI: what is signal and what is noise?
    • McKeown MJ, Hansen LK, Sejnowsk TJ, (2003) Independent component analysis of functional MRI: what is signal and what is noise? CurrOpinNeurobiol 13: 620-629.
    • (2003) CurrOpinNeurobiol , vol.13 , pp. 620-629
    • McKeown, M.J.1    Hansen, L.K.2    Sejnowsk, T.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.